1
|
Francis KL, Zheng HB, Suskind DL, Murphree TA, Phan BA, Quah E, Hendrickson AS, Zhou X, Nuding M, Hudson AS, Guttman M, Morton GJ, Schwartz MW, Alonge KM, Scarlett JM. Characterizing the human intestinal chondroitin sulfate glycosaminoglycan sulfation signature in inflammatory bowel disease. Sci Rep 2024; 14:11839. [PMID: 38782973 PMCID: PMC11116513 DOI: 10.1038/s41598-024-60959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.
Collapse
Affiliation(s)
- Kendra L Francis
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Hengqi B Zheng
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - David L Suskind
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Bao Anh Phan
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Emily Quah
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Aarun S Hendrickson
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Xisheng Zhou
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Mason Nuding
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Alexandra S Hudson
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Kimberly M Alonge
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Jarrad M Scarlett
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Sumitomo-Ueda Y, Aihara KI, Ise T, Yoshida S, Ikeda Y, Uemoto R, Yagi S, Iwase T, Ishikawa K, Hirata Y, Akaike M, Sata M, Kato S, Matsumoto T. Heparin cofactor II protects against angiotensin II-induced cardiac remodeling via attenuation of oxidative stress in mice. Hypertension 2010; 56:430-6. [PMID: 20660821 DOI: 10.1161/hypertensionaha.110.152207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin cofactor II (HCII), a serine protease inhibitor, inhibits tissue thrombin action after binding with dermatan sulfate proteoglycans in the extracellular matrix of the vascular system. We previously reported that heterozygous HCII-deficient (HCII(+/-)) humans and mice demonstrate acceleration of vascular remodeling, including atherosclerosis. However, the action of HCII on cardiac remodeling never has been determined. HCII(+/+) and HCII(+/-) mice at age 25 weeks were infused with angiotensin II (Ang II; 2.0 mg/kg/d) for 2 weeks by an osmotic mini-pump. Echocardiography revealed acceleration of cardiac concentric remodeling in HCII(+/-) mice and larger left atrial volume in HCII(+/-) mice than in HCII(+/+) mice. Histopathologic studies showed more prominent interstitial fibrosis in both the left atrium and left ventricle in HCII(+/-) mice than in HCII(+/+) mice. Daily urinary excretion of 8-hydroxy-2'-deoxyguanosine, a parameter of oxidative stress, and dihydroethidium-positive spots, indicating superoxide production in the myocardium, were markedly increased in Ang II-treated HCII(+/-) mice compared to those in HCII(+/+) mice. Cardiac gene expression levels of atrial natriuretic peptides and brain natriuretic peptides, members of the natriuretic peptide family, Nox 4, Rac-1, and p67(phox) as components of NAD(P)H oxidase, and transforming growth factor-beta1 and procollagen III were more augmented in HCII(+/-) mice than in HCII(+/+) mice. However, administration of human HCII protein attenuated all of those abnormalities in Ang II-treated HCII(+/-) mice. Moreover, human HCII protein supplementation almost abolished cardiac fibrosis in Ang II-treated HCII(+/+) mice. The results indicate that HCII has a protective role against Ang II-induced cardiac remodeling through suppression of the NAD(P)H oxidase-transforming growth factor-beta1 pathway.
Collapse
Affiliation(s)
- Yuka Sumitomo-Ueda
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Glycosaminoglycans (GAGs) are the most abundant group of heteropolysaccharides found in the body. These long unbranched molecules contain a repeating disaccharide unit. GAGs are located primarily in the extracellular matrix or on the surface of cells. These molecules serve as lubricants in the joints while at the same time providing structural rigidity to cells. Sulodexide is a highly purified glycosaminoglycan composed of a fast mobility heparin fraction as well as dermatan sulfate. Sulodexide differs from other glycosaminoglycans, like heparin, by having a longer half-life and a reduced effect on systemic clotting and bleeding. In addition, sulodexide demonstrates a lipolytic activity that is increased in comparison to heparin. Oral administration of sulodexide results in the release of tissue plasminogen activator and an increase in fibrinolytic activities. An increasing body of research has demonstrated the safety and efficacy of sulodexide in a wide range of vascular pathologies.
Collapse
Affiliation(s)
- D Adam Lauver
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|