1
|
Huang Y, Wang T. Pectin Oligosaccharides Enhance α2,6-Sialylation Modification that Promotes Apoptosis of Bladder Cancer Cells by Targeting the Hedgehog Pathway. Cell Biochem Biophys 2021; 79:719-728. [PMID: 34041669 DOI: 10.1007/s12013-021-00996-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Although pectin oligosaccharide (POS) can inhibit the growth and proliferation of gastric, colon, prostate, breast, melanoma, and leukemia cells, its effect on bladder cancer remains unknown. Therefore, screening and identification of factors associated with the sensitivity of bladder cancer to drugs and elucidation of their molecular mechanisms will help provide a theoretical basis for establishing postoperative systemic chemotherapy for patients with bladder cancer. We showed that POS promoted the apoptosis of bladder cancer cells, and this finding was consistent with enhanced α2,6-sialylation post-modification. Moreover, POS activated the Hedgehog pathway, the inhibition of which regulated the tumorigenicity of bladder cancer cells in vivo. These findings were consistent with our results in vitro. We conclude that POS promotes the apoptosis of bladder cancer and offers new insights and evidence for the development of individualized treatment strategies. Schema of molecular events underlying POS-induced inhibition of bladder cancer cell proliferation.
Collapse
Affiliation(s)
- Yinpeng Huang
- Department of Hepatobiliary, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Tianyi Wang
- Physical Examination Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
2
|
Tan H, Nie S. Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020. [PMID: 33037393 DOI: 10.1038/s41418‐020‐00633‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shawn P Kubli
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Medical Biophysics and Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Medicine, University of Hong Kong, Pok Fu Lam, 999077, Hong Kong.
| |
Collapse
|
4
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
5
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
6
|
Chen J, Hong T, Ding S, Deng L, Abudupataer M, Zhang W, Tong M, Jia J, Gong H, Zou Y, Wang TC, Ge J, Yang X. Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice. Sci Rep 2017; 7:44007. [PMID: 28272448 PMCID: PMC5341031 DOI: 10.1038/srep44007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/02/2017] [Indexed: 11/09/2022] Open
Abstract
Histamine has pleiotropic pathophysiological effects, but its role in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Histidine decarboxylase (HDC) is the main enzyme involved in histamine production. Here, we clarified the roles of HDC-expressing cells and histamine in heart failure post-MI using HDC-EGFP transgenic mice and HDC-knockout (HDC-/-) mice. HDC+CD11b+ myeloid cell numbers markedly increased in the injured hearts, and histamine levels were up-regulated in the circulation post-MI. HDC-/- mice exhibited more adverse cardiac remodeling, poorer left ventricular function and higher mortality by increasing cardiac fibrogenesis post-MI. In vitro assays further confirmed that histamine inhibited heart fibroblast proliferation. Furthermore, histamine enhanced the signal transducer and activator of transcription (STAT)-6 phosphorylation level in murine heart fibroblasts, and the inhibitive effects of histamine on fibroblast proliferation could be blocked by JAK3/STAT6 signaling selective antagonist. STAT6-knockout (STAT6-/-) mice had a phenotype similar to that of HDC-/- mice post-MI; however, in contrast to HDC-/- mice, the beneficial effects of exogenous histamine injections were abrogated in STAT6-/- mice. These data suggest that histamine exerts protective effects by modulating cardiac fibrosis and remodeling post-MI, in part through the STAT6-dependent signaling pathway.
Collapse
Affiliation(s)
- Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Long Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghong Tong
- Department of Clinical Medicine, TongRen Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
7
|
Mocking TAM, Bosma R, Rahman SN, Verweij EWE, McNaught-Flores DA, Vischer HF, Leurs R. Molecular Aspects of Histamine Receptors. HISTAMINE RECEPTORS 2016. [DOI: 10.1007/978-3-319-40308-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Wang S, Wu B, Xue J, Wang M, Chen R, Wang B. Nizatidine, a small molecular compound, enhances killed H5N1 vaccine cell-mediated responses and protects mice from lethal viral challenge. Hum Vaccin Immunother 2013; 10:461-8. [PMID: 24253609 DOI: 10.4161/hv.27165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nizatidine (NIZ), closely related to Cimetidine, is a histamine H2 receptor inverse agonist used primarily as an anti-acid drug. Recent studies showed that this class of compounds may also modulate immune responses. To evaluate adjuvant effects of NIZ on vaccine immune modulation, we formulated NIZ with a H5N1 killed viral antigen and tested in vitro and in vivo. NIZ activated DC maturation and stimulated Th1 and Th2 immune responses to H5N1 vaccine. As a result, it enhanced both antibody and T cell-mediated immune responses. We also observed that a single immunization into C57BL/6 mice blocked IL-10 upregulation and potentiated Th1/Th2 dual polarization. Importantly, the inoculation of H5N1 vaccine with NIZ significantly improved protection of animals from death after challenge and reduced virus loads in the lung tissues. Considering its water-soluble nature, compared with Cimetidine, Nizatidine may be a better choice to use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, PR China
| | - Bing Wu
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, PR China
| | - Jia Xue
- College of Veterinary Medicine; China Agricultural University; Beijing, PR China
| | - Ming Wang
- College of Veterinary Medicine; China Agricultural University; Beijing, PR China
| | - Ruiai Chen
- Dahuanong Animal Health Inc.; Guangdong, PR China
| | - Bin Wang
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, PR China; Key Laboratory of Medical Molecular Virology of MOH and MOE; Fudan University Shanghai Medical College; Shanghai, PR China
| |
Collapse
|
9
|
Novak N, Peng WM, Bieber T, Akdis C. FcεRI stimulation promotes the differentiation of histamine receptor 1-expressing inflammatory macrophages. Allergy 2013; 68:454-61. [PMID: 23414213 DOI: 10.1111/all.12109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Monocyte differentiation into dendritic cells or macrophages and recruitment to peripheral organs in chronic inflammatory diseases are directed by allergen challenge via FcεRI as well as the nature of soluble factors in the microenvironment. High-affinity receptor for IgE stimulation of effector cells results in the release of histamine, which acts on various histamine receptors (HR) 1-4, expressed by immune cells. METHODS We examined the effect of FcεRI stimulation of human monocytes on H1R expression and function of differentiating cells. The mRNA levels of H1R, H2R and histidine decarboxylase of differentiating cells were detected by quantitative real-time PCR. Expression of CD1c, CD11c, CD68 and CD163 was detected by flow cytometry. Amount of histamine, IL-6 and IL-12p70 in the cell culture was measured with the help of cytometric bead arrays or ELISA assays. Numbers of H1R-expressing macrophages were evaluated by immunofluorescence double staining of CD68 and H1R on human skin sections. RESULTS We demonstrated that FcεRI stimulation promotes the generation of H1R-expressing macrophage-like cells with enhanced histamine biosynthesis and H1R-mediated proinflammatory properties. Supporting our in vitro findings, high numbers of H1R-expressing CD68(pos) macrophages were detected in the dermis of atopic dermatitis (AD) skin lesions. CONCLUSION Our observations point to a close histamine-/HR-mediated activation of dermal macrophages, leading to modified cell differentiation and responsiveness via H1R, which might contribute to the aggravation of allergic skin inflammation in AD.
Collapse
Affiliation(s)
- N. Novak
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - W. M. Peng
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - T. Bieber
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| | - C. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| |
Collapse
|
10
|
Dandekar RD, Khan MM. Regulation of ERK2 phosphorylation by histamine in splenocytes. Immunopharmacol Immunotoxicol 2012; 33:250-8. [PMID: 21554104 DOI: 10.3109/08923973.2010.499913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Histamine is implicated in allergic disease and asthma and ERK1/2 is involved in allergic inflammation including Th2 differentiation and proliferation. This study was designed to study the effects of histamine on ERK1/2 phosphorylation in splenocytes. C57/BL6 splenocytes were treated with different concentrations of histamine (10(-4) to 10(-11) M). Histamine (10(-4) M) increased ERK2 phosphorylation. There was, however, no significant effect seen at other concentrations (10(-11) to 10(-6) M). Surprisingly, H1 receptor agonist β-histine (10(-5) M), H2 agonist amthamine (10(-5) M), H3 agonist methimepip (10(-6) M), and H4 agonist 4-methyl histamine (10(-6) M), all increased ERK2 phosphorylation. H1R antagonist pyrilamine (10(-6) M), H2R antagonist ranitidine (10(-5) M), H3/H4R antagonist thioperamide (10(-6) M), and H3R antagonist clobenpropit (10(-5) M) inhibited histamine-mediated ERK2 phosphorylation suggesting that all four histamine receptor subtypes played some role in this phosphorylation. Because tumor necrosis factor-α (TNF-α) causes phosphorylation of ERK1/2, we investigated whether histamine acted via secretion of TNF-α to affect ERK1/2 phosphorylation. As a consequence, TNF-α knockout mice were used and we found that there was inhibition of ERK1 and ERK2 phosphorylation by H2, H3, and H4 agonists. This was in contrast to the wild-type splenocytes where histamine augmented the phosphorylation of ERK2 via H2, H3, and H4 receptors. In TNF-α knockout mice histamine did not affect the phosphorylation of ERK2 via H1 receptors. The results suggested that histamine indirectly caused the ERK2 phosphorylation via its effects on the secretion of TNF-α and these effects were mediated via H1, H2, H3, and H4 receptors.
Collapse
Affiliation(s)
- Radhika D Dandekar
- Department of Pharmaceutical Sciences, Creighton University, Omaha, Nebraska, USA
| | | |
Collapse
|
11
|
GABAergic signaling in primary lens epithelial and lentoid cells and its involvement in intracellular Ca2+ modulation. Cell Calcium 2011; 50:381-92. [DOI: 10.1016/j.ceca.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 01/05/2023]
|
12
|
Fujimoto S, Komine M, Karakawa M, Uratsuji H, Kagami S, Tada Y, Saeki H, Ohtsuki M, Tamaki K. Histamine differentially regulates the production of Th1 and Th2 chemokines by keratinocytes through histamine H1 receptor. Cytokine 2011; 54:191-9. [PMID: 21324712 DOI: 10.1016/j.cyto.2010.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/25/2010] [Accepted: 12/16/2010] [Indexed: 11/17/2022]
Abstract
Histamine is a biological amine that plays an important role in allergic responses. However, the involvement of histamine signaling in late allergic responses in the skin is poorly understood. Therefore, we attempted to investigate the involvement of histamine signaling in late allergic responses, especially in keratinocytes (KCs). HaCaT KCs and normal human KCs (NHKs) predominantly expressed histamine H1 receptor (H1R) and H2 receptor (H2R). Histamine suppressed tumor necrosis factor α (TNF-α)- and interferon-γ (IFN-γ)-induced production of CC chemokine ligand 17(CCL17), a type 2 T-helper (Th2) chemokine, by HaCaT KCs. It suppressed the phosphorylation of p38 mitogen-activated protein (MAP) kinase, but not that of extracellular signal-regulated kinases (ERKs), and TNF-α- and IFN-γ-induced nuclear factor κB (NFκB) activity. In contrast, histamine enhanced the production of CXC chemokine ligand 10 (CXCL10), a Th1 chemokine, by TNF-α- and IFN-γ-stimulated HaCaT KCs and NHKs. TNF-α- and IFN-γ-induced CXCL10 production was upregulated by suppression of p38 MAP kinase or NF-κB activity, which could explain histamine involvement. We concluded that histamine suppresses CCL17 production by KCs by suppressing p38 MAP kinase and NF-κB activity through H1R and may act as a negative-feedback signal for existing Th2-dominant inflammation by suppressing CCL17 and enhancing CXCL10 production.
Collapse
Affiliation(s)
- Seiki Fujimoto
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lapilla M, Gallo B, Martinello M, Procaccini C, Costanza M, Musio S, Rossi B, Angiari S, Farina C, Steinman L, Matarese G, Constantin G, Pedotti R. Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. J Leukoc Biol 2010; 89:259-67. [PMID: 21071626 DOI: 10.1189/jlb.0910486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine may contribute to the pathology of MS and its animal model EAE. We explored the effects of histamine and specific HR agonists on activation and migratory capacity of myelin-autoreactive T cells. We show that histamine in vitro inhibits proliferation and IFN-γ production of mouse T cells activated against PLP(139-151). These effects were mimicked by the H1R agonist HTMT and the H2R agonist dimaprit and were associated with reduced activation of ERK½ kinase and with increased levels of cell cycle inhibitor p27Kip-1, both involved in T cell proliferation and anergy. H1R and H2R agonists reduced spontaneous and chemokine-induced adhesion of autoreactive T cells to ICAM-1 in vitro and blocked firm adhesion of these cells in inflamed brain microcirculation in vivo. Thus histamine, through H1R and H2R, inhibits activation of myelin-autoreactive T cells and their ability to traffic through the inflamed BBB. Strategies aimed at interfering with the histamine axis might have relevance in the therapy of autoimmune disease of the CNS.
Collapse
Affiliation(s)
- Marilena Lapilla
- Neurological Institute Foundation, IRCCS Carlo Besta, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ishikawa T, Kanda N, Hau CS, Tada Y, Watanabe S. Histamine induces human beta-defensin-3 production in human keratinocytes. J Dermatol Sci 2009; 56:121-7. [PMID: 19734018 DOI: 10.1016/j.jdermsci.2009.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND The antimicrobial peptide human beta-defensin-3 (hBD-3) is produced by epidermal keratinocytes, and promotes cutaneous antimicrobial defense, inflammation, and wound repair. hBD-3 induces histamine release from mast cells. We previously showed that histamine enhanced transcriptional activity of activator protein-1 (AP-1) in human keratinocytes by inducing the expression of AP-1 component c-Fos via the activation of extracellular signal-regulated kinase (ERK) through H1 receptors. OBJECTIVE To examine in vitro effects of histamine on hBD-3 production in normal human keratinocytes. METHODS The hBD-3 production was examined by enzyme-linked immunosorbent assays and reverse transcription-polymerase chain reaction. The transcriptional activities were analyzed by dual luciferase assays. The phosphorylation of proteins was examined by Western blotting. RESULTS Histamine enhanced hBD-3 secretion and mRNA expression in keratinocytes. The histamine-induced hBD-3 production was suppressed by H1 antagonist pyrilamine and antisense oligonucleotides against signal transducer and activator of transcription 3 (STAT3) and AP-1 components c-Jun and c-Fos. Histamine enhanced STAT3 transcriptional activity and induced tyrosine and serine phosphorylation of STAT3. The former was suppressed by Janus kinase 2 (JAK2) inhibitor AG490, while the latter was suppressed by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059; both were suppressed by pyrilamine. AG490 and PD98059 suppressed histamine-induced hBD-3 production and STAT3 activity. Histamine induced tyrosine phosphorylation of JAK2, and pyrilamine suppressed the phosphorylation. CONCLUSION It is suggested that histamine induces hBD-3 production in human keratinocytes through H1 receptors by activating STAT3 and AP-1 via JAK2 and MEK/ERK. Histamine may promote cutaneous antimicrobial defense, inflammation, and wound repair through hBD-3.
Collapse
Affiliation(s)
- Takeko Ishikawa
- Department of Dermatology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | | | | | | | | |
Collapse
|
15
|
Noubade R, Milligan G, Zachary JF, Blankenhorn EP, del Rio R, Rincon M, Teuscher C. Histamine receptor H1 is required for TCR-mediated p38 MAPK activation and optimal IFN-gamma production in mice. J Clin Invest 2008; 117:3507-18. [PMID: 17965772 DOI: 10.1172/jci32792] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/29/2007] [Indexed: 01/14/2023] Open
Abstract
Histamine receptor H1 (H1R) is a susceptibility gene in both experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune orchitis (EAO), 2 classical T cell-mediated models of organ-specific autoimmune disease. Here we showed that expression of H1R in naive CD4+ T cells was required for maximal IFN-gamma production but was dispensable for proliferation. Moreover, H1R signaling at the time of TCR ligation was required for activation of p38 MAPK, a known regulator of IFN-gamma expression. Importantly, selective reexpression of H1R in CD4+ T cells fully complemented both the IFN-gamma production and the EAE susceptibility of H1R-deficient mice. These data suggest that the presence of H1R in CD4+ T cells and its interaction with histamine regulates early TCR signals that lead to Th1 differentiation and autoimmune disease.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Bastián Y, Zepeda-Bastida A, Uribe S, Mújica A. In spermatozoa, Stat1 is activated during capacitation and the acrosomal reaction. Reproduction 2007; 134:425-33. [PMID: 17709561 DOI: 10.1530/rep-06-0264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A role for sperm-specific proteins during the early embryonic development has been suggested by a number of recent studies. However, little is known about the participation of transcription factors in that stage. Here, we show that the signal transducer and activator of transcription 1 (Stat1), but not Stat4, was phosphorylated in response to capacitation and the acrosomal reaction (AR). Moreover, Stat1 phosphorylation correlated with changes in its localization: during capacitation, Stat1 moved from the cytoplasm to the theca/flagellum fraction. During AR, Stat1 phosphorylation increased again. In addition, blocking protein kinase A (PKA) and PKC during capacitation abolished both phosphorylation and migration of Stat1. Our results show tight spatio-temporal rearrangements of Stat1, suggesting that after fertilization Stat1 participates in the first rounds of transcription within the male pronucleus.
Collapse
Affiliation(s)
- Yadira Bastián
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, Mexico
| | | | | | | |
Collapse
|
17
|
Kanda N, Watanabe S. Histamine enhances the production of human beta-defensin-2 in human keratinocytes. Am J Physiol Cell Physiol 2007; 293:C1916-23. [PMID: 17928537 DOI: 10.1152/ajpcell.00293.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anti-microbial peptide human beta-defensin-2 (hBD-2), produced by epidermal keratinocytes, plays pivotal roles in anti-microbial defense, inflammatory dermatoses, and wound repair. hBD-2 induces histamine release from mast cells. We examined the in vitro effects of histamine on hBD-2 production in normal human keratinocytes. Histamine enhanced TNF-alpha- or IFN-gamma-induced hBD-2 secretion and mRNA expression. Histamine alone enhanced transcriptional activities of NF-kappaB and activator protein-1 (AP-1) and potentiated TNF-alpha-induced NF-kappaB and AP-1 activities or IFN-gamma-induced NF-kappaB and STAT1 activities. Antisense oligonucleotides against NF-kappaB components p50 and p65, AP-1 components c-Jun and c-Fos, or H1 antagonist pyrilamine suppressed hBD-2 production induced by histamine plus TNF-alpha or IFN-gamma. Antisense oligonucleotide against STAT1 only suppressed hBD-2 production induced by histamine plus IFN-gamma. Histamine induced serine phosphorylation of inhibitory NF-kappaBalpha (IkappaBalpha) alone or together with TNF-alpha or IFN-gamma. Histamine induced c-Fos mRNA expression alone or together with TNF-alpha, whereas it did not further increase c-Jun mRNA levels enhanced by TNF-alpha. Histamine induced serine phosphorylation of STAT1 alone or together with IFN-gamma, whereas it did not further enhance IFN-gamma-induced tyrosine phosphorylation of STAT1. The histamine-induced serine phosphorylation of STAT1 was suppressed by MAPKK (MEK) inhibitor PD98059. These results suggest that histamine stimulates H1 receptor and potentiates TNF-alpha- or IFN-gamma-induced hBD-2 production dependent on NF-kappaB, AP-1, or STAT1 in human keratinocytes. Histamine may potentiate anti-microbial defense, skin inflammation, and wound repair via the induction of hBD-2.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
18
|
Bakker RA, Nicholas MW, Smith TT, Burstein ES, Hacksell U, Timmerman H, Leurs R, Brann MR, Weiner DM. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists. J Pharmacol Exp Ther 2007; 322:172-9. [PMID: 17403993 DOI: 10.1124/jpet.106.118869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human histamine H(1) receptor (H(1)R) is a prototypical G protein-coupled receptor and an important, well characterized target for the development of antagonists to treat allergic conditions. Many neuropsychiatric drugs are also known to potently antagonize this receptor, underlying aspects of their side effect profiles. We have used the cell-based receptor selection and amplification technology assay to further define the clinical pharmacology of the human H(1)R by evaluating >130 therapeutic and reference drugs for functional receptor activity. Based on this screen, we have reported on the identification of 8R-lisuride as a potent stereospecific partial H(1)R agonist (Mol Pharmacol 65:538-549, 2004). In contrast, herein we report on a large number of varied clinical and chemical classes of drugs that are active in the central nervous system that display potent H(1)R inverse agonist activity. Absolute and rank order of functional potency of these clinically relevant brain-penetrating drugs may possibly be used to predict aspects of their clinical profiles, including propensity for sedation.
Collapse
Affiliation(s)
- R A Bakker
- Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kharmate G, Liu Z, Patterson E, Khan MM. Histamine affects STAT6 phosphorylation via its effects on IL-4 secretion: role of H1 receptors in the regulation of IL-4 production. Int Immunopharmacol 2006; 7:277-86. [PMID: 17276885 PMCID: PMC1913482 DOI: 10.1016/j.intimp.2006.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 01/29/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT)-6 is a transcriptional factor activated mainly through the cytokines IL-4 and IL-13 leading to the Th2 cell differentiation. Th2 cells play a role in the etiology and pathogenesis of allergic disease. Histamine alters the Th1/Th2 cytokine balance towards the Th2 cytokine profile and consequently plays a role in allergic diseases and asthma. This study was designed to investigate the effects of histamine on the STAT6 phosphorylation. C57/BL6 splenocytes were pretreated with different concentrations of histamine (10(-)(4) M to 10(-)(13) M) followed by stimulation with PMA+ionomycin or IL-4. The phosphorylated and total basal STAT6 levels were assessed by employing the immunoblotting technique. Histamine caused the hyper-phosphorylation of STAT6. H1 receptor antagonist pyrilamine reversed the effect of histamine on STAT6 phosphorylation. However, H2 receptor antagonist ranitidine and H3/H4 receptor antagonist thioperamide did not affect the histamine mediated hyper-phosphorylation of STAT6. Furthermore, H1 receptor agonist betahistine enhanced the phosphorylation of STAT6 whereas H2 receptor agonist amthamine did not affect the phosphorylation STAT6. Furthermore, tyrosine kinase inhibitor, tyrphostin, inhibited the histamine mediated phosphorylation of STAT6 when stimulated with PMA+ionomycin. The effects of histamine on the STAT6 phosphorylation were indirect since they were blocked either by the antibodies to IL-4 and IL-13 or in IL-4 knock out mice in the presence of IL-13 antibody. These observations suggest that histamine indirectly affected the STAT6 phosphorylation via its effects on the secretion of cytokines (IL-4) and H1 receptor played a role in this process.
Collapse
Affiliation(s)
- Geetanjali Kharmate
- Departments of Pharmaceutical Sciences, Creighton University Medical Center, Omaha, NE 68178
| | - Zhongfeng Liu
- Departments of Pharmaceutical Sciences, Creighton University Medical Center, Omaha, NE 68178
| | - Eric Patterson
- Biomedical Sciences, Creighton University Medical Center, Omaha, NE 68178
| | - Manzoor M. Khan
- **Corresponding author: Manzoor M. Khan, Ph.D., Department of Pharmaceutical Sciences, Creighton University, Omaha, NE 68178, Phone: 402-280-5576, Fax: 402-280-1883, E-mail:
| |
Collapse
|
20
|
Liu Z, Kharmate G, Patterson E, Khan MM. Role of H1 receptors in histamine-mediated up-regulation of STAT4 phosphorylation. Int Immunopharmacol 2006; 6:485-93. [PMID: 16428084 DOI: 10.1016/j.intimp.2005.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/11/2005] [Accepted: 09/23/2005] [Indexed: 11/19/2022]
Abstract
Histamine shifts TH1/TH2 cytokine balance from TH1 to TH2 cytokines and regulates the function of lymphocytes after binding to histamine receptors. The phosphorylation of STAT factors and the translocation to the nucleus are important steps in the regulation of TH1/TH2 cytokine balance. This study was designed to investigate the effects of histamine on the phosphorylation of STAT4. C57BL/6 splenocytes were isolated and treated with histamine (10(-4) to 10(-9) M) after activation with either PMA (phorbol 12 myristate 13-acetate) plus ionomycin or IL-12. The phosphorylated STAT4 levels were analyzed by Western Blot Analysis. Unstimulated splenocytes expressed both STAT4 and phosphorylated STAT4. However, phosphorylated STAT4 gradually declined within 24 h. Histamine increased the phosphorylation of STAT4 at lower concentrations (10(-6) to 10(-9) M), and had no effect at higher concentrations (10(-4) and 10(-5) M) after the cells were stimulated with PMA + ionomycin. Histamine did not affect IL-12-induced phosphorylation of STAT4. To characterize the histamine receptor subtypes involved in the up-regulation of STAT4 phosphorylation, various H1, H2 and H3/H4 receptor antagonists and/or agonists were employed. H1 receptor agonist (betahistine), but not H2 receptor agonist (amthamine), induced phosphorylation of STAT4. H1 receptor antagonist (pyrilamine) inhibited histamine-mediated phosphorylation of STAT4. However, H2 receptor antagonist (ranitidine) and H3/H4 receptor antagonist (thioperamide) did not alter this effect. Tyrosine kinase inhibitor (tyrphostin) failed to block histamine-mediated phosphorylation of STAT4. These observations suggest that histamine up-regulated the phosphorylation of STAT4 via H1 receptors, and that the Ca2+-PKC pathway, but not the tyrosine kinase pathway, was involved in this effect.
Collapse
Affiliation(s)
- Zhongfeng Liu
- Department of Pharmaceutical Sciences, Creighton University Medical Center, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|