1
|
Stoyanova E, Mihaylova N, Ralchev N, Bradyanova S, Manoylov I, Raynova Y, Idakieva K, Tchorbanov A. Immunotherapeutic Potential of Mollusk Hemocyanins in Murine Model of Melanoma. Mar Drugs 2024; 22:220. [PMID: 38786612 PMCID: PMC11122751 DOI: 10.3390/md22050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The development of antitumor drugs and therapy requires new approaches and molecules, and products of natural origin provide intriguing alternatives for antitumor research. Gastropodan hemocyanins-multimeric copper-containing glycoproteins have been used in therapeutic vaccines and antitumor agents in many cancer models. MATERIALS AND METHODS We established a murine model of melanoma by challenging C57BL/6 mice with a B16F10 cell line for solid tumor formation in experimental animals. The anticancer properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) were evaluated in this melanoma model using various schemes of therapy. Flow cytometry, ELISA, proliferation, and cytotoxicity assays, as well as histology investigations, were also performed. RESULTS Beneficial effects on tumor growth, tumor incidence, and survival of tumor-bearing C57BL/6 mice after administration of the RtH or HaH were observed. The generation of high titers of melanoma-specific IgM antibodies, pro-inflammatory cytokines, and tumor-specific CTLs, and high levels of tumor-infiltrated M1 macrophages enhanced the immune reaction and tumor suppression. DISCUSSION Both RtH and HaH exhibited promising properties for applications as antitumor therapeutic agents and future experiments with humans.
Collapse
Affiliation(s)
- Emiliya Stoyanova
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| | - Nikolina Mihaylova
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| | - Nikola Ralchev
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| | - Silviya Bradyanova
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| | - Iliyan Manoylov
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| | - Yuliana Raynova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Krassimira Idakieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Andrey Tchorbanov
- Department of Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (S.B.); (I.M.)
| |
Collapse
|
2
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
3
|
Stoyanova E, Mihaylova N, Ralchev N, Ganova P, Bradyanova S, Manoylov I, Raynova Y, Idakieva K, Tchorbanov A. Antitumor Properties of Epitope-Specific Engineered Vaccine in Murine Model of Melanoma. Mar Drugs 2022; 20:md20060392. [PMID: 35736195 PMCID: PMC9227764 DOI: 10.3390/md20060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Finding new effective compounds of natural origin for composing anti-tumor vaccines is one of the main goals of antitumor research. Promising anti-cancer agents are the gastropodan hemocyanins-multimeric copper-containing glycoproteins used so far for therapy of different tumors. The properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) upon their use as carrier-proteins in conjugated vaccines, containing ganglioside mimotope GD3P4 peptide, were studied in the developed murine melanoma model. Murine melanoma cell line B16F10 was used for solid tumor establishment in C57BL/6 mice using various schemes of therapy. Protein engineering, flow cytometry, and cytotoxicity assays were also performed. The administration of the protein-engineered vaccines RtH-GD3P4 or HaH-GD3P4 under the three different regimens of therapy in the B16F10 murine melanoma model suppressed tumor growth, decreased tumor incidence, and prolonged the survival of treated animals. The immunization of experimental mice induced an infiltration of immunocompetent cells into the tumors and generated cytotoxic tumor-specific T cells in the spleen. The treatment also generates significantly higher levels of tumor-infiltrated M1 macrophages, compared to untreated tumor-bearing control mice. This study demonstrated a promising approach for cancer therapy having potential applications for cancer vaccine research.
Collapse
Affiliation(s)
- Emiliya Stoyanova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Nikolina Mihaylova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Nikola Ralchev
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Petya Ganova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Iliyan Manoylov
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Yuliana Raynova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Krassimira Idakieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
- Correspondence: ; Tel.: + 359-2-979-6357; Fax: +359-2-870-0109
| |
Collapse
|
4
|
Intensive therapy with gastropodan hemocyanins increases their antitumor properties in murine model of colon carcinoma. Int Immunopharmacol 2020; 84:106566. [PMID: 32416451 DOI: 10.1016/j.intimp.2020.106566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
Various natural compounds have been tested as anticancer therapeutics in clinical trials. Most promising direction for antitumor therapy is the use of substances which enhance the immune system response stimulating tumor-specific lymphocytes. Hemocyanins are large extracellular oxygen transport glycoproteins isolated from different arthropod and mollusk species which exhibit strong anticancer properties. Immunized in mammals they trigger Th1 immune response that promotes unspecific stimulation and adjuvant activity in experimental therapeutic vaccines for cancer and antibody development. In the present study we used two hemocyanins - one isolated from marine snail Rapana thomasiana (RtH) and another one, from the terrestrial snail Helix pomatia (HpH) which have been investigated by using different administration schedules (intensive and mild) in murine model of colon carcinoma. The treatment with RtH and HpH generated high levels of antitumor IgG antibodies, antibody-producing plasma cells and tumor-specific CTLs, stimulated secretion of proinflammatory cytokines, suppressed the manifestation of carcinoma symptoms as tumor growth and size, and prolonged the life span of treated mice. Our results showed a significant anti-cancer effect of RtH and HpH hemocyanins on a murine model of colon carcinoma with promising potential for immunotherapy in various schemes of administration based on cross-reactive tumor-associated epitopes.
Collapse
|
5
|
Jiménez JM, Salazar ML, Arancibia S, Villar J, Salazar F, Brown GD, Lavelle EC, Martínez-Pomares L, Ortiz-Quintero J, Lavandero S, Manubens A, Becker MI. TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals. Front Immunol 2019; 10:1136. [PMID: 31214162 PMCID: PMC6554540 DOI: 10.3389/fimmu.2019.01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Mollusk hemocyanins have biomedical uses as carriers/adjuvants and nonspecific immunostimulants with beneficial clinical outcomes by triggering the production of proinflammatory cytokines in antigen-presenting cells (APCs) and driving immune responses toward type 1 T helper (Th1) polarization. Significant structural features of hemocyanins as a model antigen are their glycosylation patterns. Indeed, hemocyanins have a multivalent nature as highly mannosylated antigens. We have previously shown that hemocyanins are internalized by APCs through receptor-mediated endocytosis with proteins that contain C-type lectin domains, such as mannose receptor (MR). However, the contribution of other innate immune receptors to the proinflammatory signaling pathway triggered by hemocyanins is unknown. Thus, we studied the roles of Dectin-1, Dectin-2, and Toll-like receptor 4 (TLR4) in the hemocyanin activation of murine APCs, both in dendritic cells (DCs) and macrophages, using hemocyanins from Megathura crenulata (KLH), Concholepas concholepas (CCH) and Fissurella latimarginata (FLH). The results showed that these hemocyanins bound to chimeric Dectin-1 and Dectin-2 receptors in vitro; which significantly decreased when the glycoproteins were deglycosylated. However, hemocyanin-induced proinflammatory effects in APCs from Dectin-1 knock-out (KO) and Dectin-2 KO mice were independent of both receptors. Moreover, when wild-type APCs were cultured in the presence of hemocyanins, phosphorylation of Syk kinase was not detected. We further showed that KLH and FLH induced ERK1/2 phosphorylation, a key event involved in the TLR signaling pathway. We confirmed a glycan-dependent binding of hemocyanins to chimeric TLR4 in vitro. Moreover, DCs from mice deficient for MyD88-adapter-like (Mal), a downstream adapter molecule of TLR4, were partially activated by FLH, suggesting a role of the TLR pathway in hemocyanin recognition to activate APCs. The participation of TLR4 was confirmed through a decrease in IL-12p40 and IL-6 secretion induced by FLH when a TLR4 blocking antibody was used; a reduction was also observed in DCs from C3H/HeJ mice, a mouse strain with a nonfunctional mutation for this receptor. Moreover, IL-6 secretion induced by FLH was abolished in macrophages deficient for TLR4. Our data showed the involvement of TLR4 in the hemocyanin-mediated proinflammatory response in APCs, which could cooperate with MR in innate immune recognition of these glycoproteins.
Collapse
Affiliation(s)
- José M. Jiménez
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Sergio Arancibia
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Javiera Villar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Ed C. Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Jafet Ortiz-Quintero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Biosonda Corporation, Santiago, Chile
| |
Collapse
|
6
|
Khan BM, Liu Y. Marine Mollusks: Food with Benefits. Compr Rev Food Sci Food Saf 2019; 18:548-564. [DOI: 10.1111/1541-4337.12429] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Dept. of Biology, College of Science; Shantou Univ.; Shantou Guangdong 515063 PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Dept. of Biology, College of Science; Shantou Univ.; Shantou Guangdong 515063 PR China
| |
Collapse
|
7
|
Immunotherapeutic Potential of Mollusk Hemocyanins in Combination with Human Vaccine Adjuvants in Murine Models of Oral Cancer. J Immunol Res 2019; 2019:7076942. [PMID: 30847353 PMCID: PMC6362480 DOI: 10.1155/2019/7076942] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Mollusk hemocyanins have been used for decades in immunological and clinical applications as natural, nontoxic, nonpathogenic, and nonspecific immunostimulants for the treatment of superficial bladder cancer, as carriers/adjuvants of tumor-associated antigens in cancer vaccine development and as adjuvants to dendritic cell-based immunotherapy, because these glycoproteins induce a bias towards Th1 immunity. Here, we analyzed the preclinical therapeutic potential of the traditional keyhole limpet hemocyanin (KLH) and two new hemocyanins from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH) in mouse models of oral squamous cell carcinoma. Due to the aggressiveness and deadly malignant potential of this cancer, the hemocyanins were applied in combination with adjuvants, such as alum, AddaVax, and QS-21, which have been shown to be safe and effective in human vaccines, to potentiate their antitumor activity. The immunogenic performance of the hemocyanins in combination with the adjuvants was compared, and the best formulation was evaluated for its antitumor effects in two murine models of oral cancer: MOC7 cells implanted in the flank (heterotopic) and bioluminescent AT-84 E7 Luc cells implanted in the floor of the mouth (orthotopic). The results demonstrated that the hemocyanins in combination with QS-21 showed the greatest immunogenicity, as reflected by a robust, specific humoral response predominantly characterized by IgG2a antibodies and a sustained cellular response manifesting as a delayed hypersensitivity reaction. The KLH- and FLH-QS-21 formulations showed reduced tumor development and greater overall survival. Hemocyanins, as opposed to QS-21, had no cytotoxic effect on either oral cancer cell line cultured in vitro, supporting the idea that the antitumor effects of hemocyanins are associated with their modulation of the immune response. Therefore, hemocyanin utilization would allow a lower QS-21 dosage to achieve therapeutic results. Overall, our study opens a new door to further investigation of the use of hemocyanins plus adjuvants for the development of immunotherapies against oral carcinoma.
Collapse
|
8
|
Todinova S, Raynova Y, Idakieva K. Calorimetric Study of Helix aspersa Maxima Hemocyanin Isoforms. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:8450792. [PMID: 29686932 PMCID: PMC5857327 DOI: 10.1155/2018/8450792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
The thermal unfolding of hemocyanin isoforms, β-HaH and αD+N -HaH, isolated from the hemolymph of garden snails Helix aspersa maxima, was studied by means of differential scanning calorimetry (DSC). One transition, with an apparent transition temperature (Tm ) at 79.88°C, was detected in the thermogram of β-HaH in 20 mM HEPES buffer, containing 0.1 M NaCl, 5 mM CaCl2, and 5 mM MgCl2, pH 7.0, at scan rate of 1.0°C min-1. By means of successive annealing procedure, two individual transitions were identified in the thermogram of αD+N -HaH. Denaturation of both hemocyanins was found to be an irreversible process. The scan-rate dependence of the calorimetric profiles indicated that the thermal unfolding of investigated hemocyanins was kinetically controlled. The thermal denaturation of the isoforms β-HaH and αD+N -HaH was described by the two-state irreversible model, and parameters of the Arrhenius equation were calculated.
Collapse
Affiliation(s)
- Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Bl. 21, Acad. G. Bonchev Str., Sofia 1113, Bulgaria
| | - Yuliana Raynova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., Sofia 1113, Bulgaria
| | - Krassimira Idakieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., Sofia 1113, Bulgaria
| |
Collapse
|
9
|
Ahmad TB, Liu L, Kotiw M, Benkendorff K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:156-178. [PMID: 28830818 DOI: 10.1016/j.jep.2017.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review focuses on traditional and contemporary anti-inflammatory uses of mollusc-derived products summarising all the in vitro, in vivo and human clinical trials that have tested the anti-inflammatory activity of molluscan natural products. Inflammatory conditions, burns and wounds have been an ongoing concern for human health since the early era of civilisation. Many texts from ancient medicine have recorded the symptoms, signs and treatments for these conditions. Natural treatments are well-documented in traditional European medicine, Traditional Chinese Medicine (TCM), Siddha and ancient Mediterranean and African traditional medicine and include a surprisingly large number of molluscan species. MATERIALS AND METHODS An extensive review of the Materia Medica and scientific literature was undertaken using key word searches for "mollusc" and "anti-inflammatory" or "immunomodulatory" or "wound healing". RESULTS Molluscs have been used in ethnomedicine by many traditional cultures to treat different aspects of inflammatory conditions. We found 104 different anti-inflammatory preparations from a variety of molluscan species, of which 70 were from the well-documented Traditional Chinese Medicine (TCM). This traditional use of molluscs has driven the testing for inflammatory activity in extracts from some species in the phylum Mollusca, with 20 in vitro studies, 40 in vivo animal studies and 14 human clinical trials performed to substantiate the anti-inflammatory and wound healing activity of molluscs. Some of these studies have led to the approval of mollusc-derived products to be used as over-the-counter (OTC) nutraceuticals, like Lyprinol® and Biolane™ from the New Zealand green lipped mussel Perna canaliculus. CONCLUSION Natural products provide important leads for the development of pharmaceuticals, including anti-inflammatory agents. Only a small proportion of the molluscan traditional medicines have been tested to confirm their anti-inflammatory activity and most screening studies have tested crude extracts from molluscs without any chemical characterisation. This highlights the need for further research to strategically identify the anti-inflammatory compounds in molluscan medicines to provide leads for novel anti-inflammatory drugs in the future.
Collapse
Affiliation(s)
- Tarek B Ahmad
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Australia; Centre for Health Sciences Research, University of Southern Queensland, Australia.
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Australia.
| | - Michael Kotiw
- Centre for Health Sciences Research, University of Southern Queensland, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Australia.
| |
Collapse
|
10
|
Pizarro-Bauerle J, Maldonado I, Sosoniuk-Roche E, Vallejos G, López MN, Salazar-Onfray F, Aguilar-Guzmán L, Valck C, Ferreira A, Becker MI. Molluskan Hemocyanins Activate the Classical Pathway of the Human Complement System through Natural Antibodies. Front Immunol 2017; 8:188. [PMID: 28286504 PMCID: PMC5323374 DOI: 10.3389/fimmu.2017.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/18/2022] Open
Abstract
Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting, glycosylation status had a limited effect. Finally, our data open possibilities for further studies leading to the design of improved hemocyanin-based research tools for diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Javier Pizarro-Bauerle
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Ismael Maldonado
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Eduardo Sosoniuk-Roche
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Gerardo Vallejos
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Mercedes N López
- Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, ICBM, Universidad de Chile, Santiago, Chile; Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, ICBM, Universidad de Chile, Santiago, Chile; Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Carolina Valck
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - Arturo Ferreira
- Immunology of Microbial Aggression Laboratory, Immunology Program, Faculty of Medicine, ICBM, Universidad de Chile , Santiago , Chile
| | - María Inés Becker
- Biosonda Corporation, Santiago, Chile; Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| |
Collapse
|
11
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
12
|
Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity. Int J Biol Macromol 2015; 82:798-805. [PMID: 26478091 DOI: 10.1016/j.ijbiomac.2015.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
This is the first study on the surface modification of a hemocyanin from marine snail Rapana thomasiana (RtH) with series of imidazolium-based amino acid ionic liquids [emim][AA]. We monitored the induced by [emim][AA] conformational changes in RtH molecule and evaluated the effect of these ionic liquids (ILs) on the protein thermal stability. The cytotoxicity of all obtained RtH-[emim][AA] complexes was assessed toward breast cancer cells (MCF-7) and murine fibroblasts (3T3). As a whole, even small amounts of the tested ILs altered the secondary structure of RtH. The thermal denaturation of RtH in presence of [emim][AA] displayed multi-component transitions, which were shifted toward lower temperatures in comparison to those estimated for the native RtH. The profiles of the RtH-IL calorimetric curves show a clear dependence on the structure of the added salts. In addition, all RtH-[emim][AA] complexes exhibited an enhanced antiprofilerative activity of toward MCF-7 cells in comparison to that of the native RtH. The best results are observed for RtH-[emim][Leu], RtH-[emim][Trp] or RtH-[emim][Ile], which applied in concentration of 700 μg/mL inhibited the MCF-7 cell viability (for 24h) by 66, 63 and 53%, respectively. In addition, these IL-RtH complexes were less cytotoxic to 3T3 cells, i.e. they exhibited some cell specificity.
Collapse
|
13
|
Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Mar Drugs 2015; 13:5237-75. [PMID: 26295242 PMCID: PMC4557022 DOI: 10.3390/md13085237] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds. Traditionally known for the production of the ancient dye Tyrian purple, these molluscs also form the basis of some rare traditional medicines that have been used for thousands of years. Whilst these traditional and alternative medicines have not been chemically analysed or tested for efficacy in controlled clinical trials, a significant amount of independent research has documented the biological activity of extracts and compounds from these snails. In particular, Muricidae produce a suite of brominated indoles with anti-inflammatory, anti-cancer and steroidogenic activity, as well as choline esters with muscle-relaxing and pain relieving properties. These compounds could explain some of the traditional uses in wound healing, stomach pain and menstrual problems. However, the principle source of bioactive compounds is from the hypobranchial gland, whilst the shell and operculum are the main source used in most traditional remedies. Thus further research is required to understand this discrepancy and to optimise a quality controlled natural medicine from Muricidae.
Collapse
|
14
|
Gesheva V, Chausheva S, Stefanova N, Mihaylova N, Doumanova L, Idakieva K, Tchorbanov A. Helix pomatia hemocyanin — A novel bio-adjuvant for viral and bacterial antigens. Int Immunopharmacol 2015; 26:162-8. [DOI: 10.1016/j.intimp.2015.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/26/2015] [Accepted: 03/11/2015] [Indexed: 01/07/2023]
|
15
|
Gesheva V, Chausheva S, Mihaylova N, Manoylov I, Doumanova L, Idakieva K, Tchorbanov A. Anti-cancer properties of gastropodan hemocyanins in murine model of colon carcinoma. BMC Immunol 2014; 15:34. [PMID: 25168124 PMCID: PMC4164791 DOI: 10.1186/s12865-014-0034-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/21/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Various immunotherapeutic approaches have been used for the treatment of cancer. A number of natural compounds are designed to repair, stimulate, or enhance the immune system response. Among them are the hemocyanins (Hcs) - extracellular copper proteins isolated from different arthropod and mollusc species. Hcs are oxygen transporter molecules and normally are freely dissolved in the hemolymph of these animals. Hemocyanins are very promising class of anti-cancer therapeutics due to their immunogenic properties and the absence of toxicity or side effects. KLH (Megathura crenulata hemocyanin) is the most studied molecule of this group setting a standard for natural carrier protein for small molecules and has been used in anti-tumor clinical trials. RESULTS The Hcs isolated from marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix pomatia (HpH) express strong in vivo anti-cancer and anti-proliferative effects in the developed by us murine model of colon carcinoma. The immunization with RtH and HpH prolonged the survival of treated animals, improve humoral anti-cancer response and moderate the manifestation of C-26 carcinoma symptoms as tumor growth, splenomegaly and lung metastasis appearance. CONCLUSION Hemocyanins are used so far for therapy of superficial bladder cancer and murine melanoma models. Our findings demonstrate a potential anti-cancer effect of hemocyanins on a murine model of colon carcinoma suggesting their use for immunotherapy of different types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey Tchorbanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad, G, Bonchev Str, 26, Sofia, 1113, Bulgaria.
| |
Collapse
|
16
|
Kindekov I, Mileva M, Krastev D, Vassilieva V, Raynova Y, Doumanova L, Aljakov M, Idakieva K. Radioprotective effect of Rapana thomasiana hemocyanin in gamma induced acute radiation syndrome. BIOTECHNOL BIOTEC EQ 2014; 28:533-539. [PMID: 26019540 PMCID: PMC4434101 DOI: 10.1080/13102818.2014.924683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2014] [Indexed: 11/25/2022] Open
Abstract
The radioprotective effect of Rapana thomasiana hemocyanin (RtH) against radiation-induced injuries (stomach ulcers, survival time and endogenous haemopoiesis) and post-radiation recovery was investigated in male albino mice (C3H strain). Radiation course was in a dose of 7.5 Gy (LD 100/30 – dose that kills 100% of the mice at 30 days) from 137Cs with a dose of 2.05 Gy/min. Radiation injuries were manifested by inducing а hematopoietic form of acute radiation syndrome. RtH was administered intraperitoneally in a single dose of 50, 100, 150 and 200 mg/kg body weight (b. w.) once a day for five consecutive days before irradiation. The results obtained showed that radiation exposure led to (1) 100% mortality rate, (2) ulceration in the stomach mucosa and (3) decrease formation of spleen colonies as a marker of endogenous haemopoiesis. Administration of RtH at a dose of 200 mg/kg provided better protection against radiation-induced stomach ulceration, mitigated the lethal effects of radiation exposure and recovered endogenous haemopoiesis versus irradiated but not supplemented mice. It could be expected that RtH will find a use in mitigating radiation induced injury and enhanced radiorecovery.
Collapse
Affiliation(s)
- Ivan Kindekov
- Scientific Laboratory of Radiation Protection, Radiobiology and Cell Radiobiology, Military Medical Academy , Sofia , Bulgaria
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Dimo Krastev
- Department of Anatomy and Histology, College of Medicine 'Yordanka Filaretova' , Sofia , Bulgaria
| | - Vladimira Vassilieva
- Scientific Laboratory of Radiation Protection, Radiobiology and Cell Radiobiology, Military Medical Academy , Sofia , Bulgaria
| | - Yuliana Raynova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Lyuba Doumanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Mitko Aljakov
- Scientific Laboratory of Radiation Protection, Radiobiology and Cell Radiobiology, Military Medical Academy , Sofia , Bulgaria
| | - Krassimira Idakieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , Sofia , Bulgaria
| |
Collapse
|
17
|
Idakieva K, Chakarska I, Ivanova P, Tchorbanov A, Dobrovolov I, Doumanova L. Purification of Hemocyanin from Marine GastropodRapana Thomasianausing Ammonium Sulfate Precipitation Method. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma. PLoS One 2014; 9:e87240. [PMID: 24466345 PMCID: PMC3900722 DOI: 10.1371/journal.pone.0087240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/21/2013] [Indexed: 11/06/2022] Open
Abstract
Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.
Collapse
|
19
|
Arancibia S, Del Campo M, Nova E, Salazar F, Becker MI. Enhanced structural stability of Concholepas hemocyanin increases its immunogenicity and maintains its non-specific immunostimulatory effects. Eur J Immunol 2012; 42:688-99. [PMID: 22144228 DOI: 10.1002/eji.201142011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hemocyanins, which boost the immune system of mammals, have been used as carrier-adjuvants to promote Ab production against haptens and peptides, as immunostimulants during therapy for bladder carcinoma and as a component in therapeutic vaccines for cancer. These biomedical applications have led to growing interest in obtaining hemocyanins with high immunogenicity. Here, we study the immunological properties of a modified oxidized Concholepas concholepas hemocyanin (Ox-CCH) obtained by the oxidation of its carbohydrates using sodium periodate. We assessed the internalization of Ox-CCH into DCs and its immunogenicity and antitumor effects. Transmission electron microscopy showed no changes in Ox-CCH quaternary structure with respect to native CCH, although proteolytic treatment followed by SDS-PAGE analysis demonstrated that Schiff bases were formed. Interestingly, DCs internalized Ox-CCH faster than CCH, mainly through macropinocytosis. During this process, Ox-CCH remained inside endosome-like structures for a longer period. Mouse immunization experiments demonstrated that Ox-CCH is more immunogenic and a better carrier than CCH. Moreover, Ox-CCH showed a significant antitumor effect in the B16F10 melanoma model similar to that produced by CCH, inducing IFN-γ secretion. Together, these data demonstrate that the aldehydes formed by the periodate oxidation of sugar moieties stabilizes the CCH structure, increasing its adjuvant/immunostimulatory carrier effects.
Collapse
|
20
|
Idakieva K, Meersman F, Gielens C. Reversible heat inactivation of copper sites precedes thermal unfolding of molluscan (Rapana thomasiana) hemocyanin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:731-8. [PMID: 22446410 DOI: 10.1016/j.bbapap.2012.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022]
Abstract
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV-vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60°C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80°C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90°C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.
Collapse
Affiliation(s)
- Krassimira Idakieva
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | |
Collapse
|
21
|
Gesheva V, Idakieva K, Kerekov N, Nikolova K, Mihaylova N, Doumanova L, Tchorbanov A. Marine gastropod hemocyanins as adjuvants of non-conjugated bacterial and viral proteins. FISH & SHELLFISH IMMUNOLOGY 2011; 30:135-142. [PMID: 20887791 DOI: 10.1016/j.fsi.2010.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 05/29/2023]
Abstract
Killed viral vaccines and bacterial toxoids are weakly immunogenic. Numerous compounds are under evaluation as immunological adjuvants and peptide-carriers to improve the immune response. The hemocyanins, giant extracellular copper proteins in the blood of many mollusks, are widely used as immune stimulants. In the present study we investigated the adjuvant properties of hemocyanins isolated from marine gastropods Rapana thomasiana and Megathura crenulata. An immunization with Influenza vaccine or tetanus toxoid combined with Rapana thomasiana hemocyanin (RtH) and Keyhole limpet hemocyanin (KLH) in mice induced an anti-influenza cytotoxic response lasting at least 5 months and an antibody response to viral proteins. The IgG antibody response to the tetanus toxoid (TT) combined with RtH or KLH was comparable to the response of the toxoid in complete Freund's adjuvant. The results obtained demonstrate that the both hemocyanins are acceptable as potential bio-adjuvants for subunit vaccines.
Collapse
Affiliation(s)
- Vera Gesheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad G Bonchev Str 26, 1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
22
|
Concholepas hemocyanin biosynthesis takes place in the hepatopancreas, with hemocytes being involved in its metabolism. Cell Tissue Res 2010; 342:423-35. [DOI: 10.1007/s00441-010-1057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/08/2010] [Indexed: 11/25/2022]
|
23
|
Becker MI, Fuentes A, Del Campo M, Manubens A, Nova E, Oliva H, Faunes F, Valenzuela MA, Campos-Vallette M, Aliaga A, Ferreira J, De Ioannes AE, De Ioannes P, Moltedo B. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties. Int Immunopharmacol 2009; 9:330-9. [PMID: 19159699 DOI: 10.1016/j.intimp.2008.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|