1
|
Kim N, Chung G, Son SR, Park JH, Lee YH, Park KT, Cho IH, Jang DS, Kim SK. Magnolin Inhibits Paclitaxel-Induced Cold Allodynia and ERK1/2 Activation in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2283. [PMID: 37375908 DOI: 10.3390/plants12122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anti-cancer drugs. The main symptoms often include sensory disturbances and neuropathic pain, and currently there is no effective treatment for this condition. This study aimed to investigate the suppressive effects of magnolin, an extracellular signal-regulated kinase (ERK) inhibitor substance derived from a 95% EtOH extract of the seeds of Magnolia denudata, on the symptoms of CIPN. A taxol-based anti-cancer drug paclitaxel (PTX) was repeatedly injected (2 mg/kg/day, total 8 mg/kg) into mice to induce CIPN. A neuropathic pain symptom was assessed using a cold allodynia test that scores behaviors of licking and shaking paw after plantar administration of acetone drop. Magnolin was administered intraperitoneally (0.1, 1, or 10 mg/kg) and behavioral changes to acetone drop were measured. The effect of magnolin administration on ERK expression in the dorsal root ganglion (DRG) was investigated using western blot analysis. The results showed that the repeated injections of PTX induced cold allodynia in mice. Magnolin administration exerted an analgesic effect on the PTX-induced cold allodynia and inhibited the ERK phosphorylation in the DRG. These results suggest that magnolin could be developed as an alternative treatment to suppress paclitaxel-induced neuropathic pain symptoms.
Collapse
Affiliation(s)
- Nari Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hyun Park
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Hyun Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keon-Tae Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Tie FF, Fu YY, Hu N, Chen Z, Wang HL. Isolation of oligostilbenes from Iris lactea Pall. var. chinensis (Fisch.) Koidz and their anti-inflammatory activities. RSC Adv 2022; 12:32912-32922. [PMID: 36425180 PMCID: PMC9667474 DOI: 10.1039/d2ra05176a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 10/28/2023] Open
Abstract
Iris lactea Pall. var. chinensis (Fisch.) Koidz (Iris lactea) is an herbaceous perennial widely distributed in China, India, and South Korea. Iris lactea has been extensively used in traditional Chinese medicine. The present study isolated a new oligostilbene (compound 1), together with three known oligostilbenes (compounds 2, 3 and 4) from the seeds of Iris lactea. The structures of these compounds were elucidated by HRESIMS, NMR, and chemical analyses. The network-based pharmacologic analysis platform was used to predict the target proteins related to inflammation of isolated compounds. Furthermore, the isolated compounds were tested for their anti-inflammatory effects in LPS-stimulated RAW 264.7 cells. In this network, 138 candidate targets of compounds related to its therapeutic effect on inflammation were identified. In addition, compounds 1, 2, 3 and 4 significantly decreased NO content and the IL-6 levels as well as the expression of COX-2 in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Fang-Fang Tie
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Xining 810008 P. R. China +869716143857 +8613997384106
| | - Yang-Yang Fu
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Xining 810008 P. R. China +869716143857 +8613997384106
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Xining 810008 P. R. China +869716143857 +8613997384106
| | - Zhi Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province Xining 810008 P. R. China
| | - Hong-Lun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Xining 810008 P. R. China +869716143857 +8613997384106
| |
Collapse
|
3
|
Pharmacological Small Molecules against Prostate Cancer by Enhancing Function of Death Receptor 5. Pharmaceuticals (Basel) 2022; 15:ph15081029. [PMID: 36015177 PMCID: PMC9413322 DOI: 10.3390/ph15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Death receptor 5 (DR5) is a membrane protein that mediates exogenous apoptosis. Based on its function, it is considered to be a target for the treatment of cancers including prostate cancer. It is encouraging to note that a number of drugs targeting DR5 are now progressing to different stages of clinical trial studies. We collected 38 active compounds that could produce anti-prostate-cancer effects by modulating DR5, 28 of which were natural compounds and 10 of which were synthetic compounds. In addition, 6 clinically used chemotherapeutic agents have also been shown to promote DR5 expression and thus exert apoptosis-inducing effects in prostate cancer cells. These compounds promote the expression of DR5, thereby enhancing its function in inducing apoptosis. When these compounds were used in combination with the natural ligand of DR5, the number of apoptotic cells was significantly increased. These compounds are all promising for development as anti-prostate-cancer drugs, while most of these compounds are currently being evaluated for their anti-prostate-cancer effects at the cellular level and in animal studies. A great deal of more in-depth research is needed to evaluate whether they can be developed as drugs. We collected literature reports on small molecules against prostate cancer through modulation of DR5 to understand the current dynamics in this field and to evaluate the prospects of small molecules against prostate cancer through modulation of DR5.
Collapse
|
4
|
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17:95. [PMID: 35974408 PMCID: PMC9380348 DOI: 10.1186/s13020-022-00653-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Inflammation contributes to various diseases and soybeans and legumes are shown to reduce inflammation. However, the bioactive ingredients involved and mechanisms are not completely known. We hypothesized that soy isoflavones daidzin and daidzein exhibit anti-inflammatory effect in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cell model and that activation mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways may mediate the effect. Methods Cell viability and nitric oxide (NO) level were determined by 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Griess reagent respectively. ELISA kits and Western blotting respectively assessed the generations of pro-inflammatory cytokines and protein expressions of signaling molecules. p65 nuclear translocation was determined by immunofluorescence assay. Results The in vitro results showed that both isoflavones did not affect cell viability at the concentrations being tested and significantly reduced levels of NO, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inflammatory indicators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. Daidzin and daidzein partially suppressed MAPK signaling pathways, reducing the phosphorylation of p38 and ERK; whilst phosphorylation of JNK was mildly but not significantly decreased. For the involvement of NF-κB signaling pathways, daidzin only reduced the phosphorylation of p65 whereas daidzein effectively inhibited the phosphorylation of IKKα/β, IκBα and p65. Daidzin and daidzein inhibited p65 nuclear translocation, comparable with dexamethasone (positive control). Conclusion This study supports the anti-inflammatory effects of isoflavones daidzin and daidzein, which were at least partially mediated through inactivation of MAPK and/or NF-κB signaling pathways in macrophages.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
5
|
Ali ES, Akter S, Ramproshad S, Mondal B, Riaz TA, Islam MT, Khan IN, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview. Cancer Cell Int 2022; 22:246. [PMID: 35941592 PMCID: PMC9358858 DOI: 10.1186/s12935-022-02666-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Thoufiqul Alam Riaz
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Cai X, Sha F, Zhao C, Zheng Z, Zhao S, Zhu Z, Zhu H, Chen J, Chen Y. Synthesis and anti-inflammatory activity of novel steroidal chalcones with 3β-pregnenolone ester derivatives in RAW 264.7 cells in vitro. Steroids 2021; 171:108830. [PMID: 33836205 DOI: 10.1016/j.steroids.2021.108830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
To identify new potential anti-inflammatory agents, we herein report the synthesis of novel steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives using pregnenolone as the starting material. The structures of the newly synthesised compounds were confirmed by 1H NMR, 13C NMR, HRMS and infrared imaging. All the derivatives were examined to determine their in vitro anti-inflammatory profiles against LPS-induced inflammation in RAW 264.7 cells; the derivates were evaluated by the quantification of the pro-inflammatory mediator nitric oxide (NO) in the cell culture supernatant based on the Griess reaction, which measures nitrite levels, followed by an in vitro cytotoxicity study. Among these novel derivatives, compound 11e [3β-3-phenyl acrylate-pregn-5-en-17β-yl-3' -(p-fluoro)-phenylprop-2'-en-1'-one] was identified as the most potent anti-inflammatory agent, which showed significant anti-inflammatory activity by inhibiting the LPS-induced pro-inflammatory mediator NO in a dose-dependent manner without any cytotoxicity. Moreover, compound 11e markedly inhibited the expression of pro-inflammatory cytokines, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2), in LPS-induced RAW 264.7 cells. Further studies confirmed that compound 11e significantly suppressed the transcriptional activity of NF-κB in activated RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 11e to the active site of the pro-inflammatory proteins, which confirmed that compound 11e acted as an anti-inflammatory mediator. These results indicated that steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives might be considered for further research in the design of anti-inflammatory drugs, and compound 11e might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fei Sha
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zheng
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shulin Zhao
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiaoling Chen
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
7
|
Prasansuklab A, Theerasri A, Rangsinth P, Sillapachaiyaporn C, Chuchawankul S, Tencomnao T. Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. J Tradit Complement Med 2020; 11:144-157. [PMID: 33520683 PMCID: PMC7833040 DOI: 10.1016/j.jtcme.2020.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background and aim The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable sources for the discovery of new antiviral drugs against SARS-CoV-2. This present review aims to comprehensively summarize the up-to-date scientific literatures on biological activities of plant- and mushroom-derived compounds relevant to mechanistic targets involved in SARS-CoV-2 infection and inflammatory-associated pathogenesis, including viral entry, replication and release, and the renin-angiotensin-aldosterone system (RAAS). Experimental procedure Data were retrieved from a literature search available on PubMed, Scopus and Google Scholar databases and collected until the end of May 2020. The findings from in vitro cell and non-cell based studies were considered, while the results of in silico studies were excluded. Results and conclusion Based on the previous findings in SARS-CoV studies, except in silico molecular docking analysis, herein, we provide a total of 150 natural compounds as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than the existing therapeutic agents. Several natural compounds have showed their promising actions on multiple therapeutic targets, which should be further explored. Among them, quercetin, one of the most abundant of plant flavonoids, is proposed as a lead candidate with its ability on the virus side to inhibit SARS-CoV spike protein-angiotensin-converting enzyme 2 (ACE2) interaction, viral protease and helicase activities, as well as on the host cell side to inhibit ACE activity and increase intracellular zinc level. Relevant and up-to-date publications in natural products with anti-COVID-19 potential. Emphasis on the potential of anti-COVID-19 plant/mushroom-based medicine. Twenty four proposed natural compounds for the anti-COVID-19 drug candidates. Quercetin emerged as the most promising compound acting on multiple therapeutic targets.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Theerasri
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panthakarn Rangsinth
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
8
|
Aja I, Ruiz-Larrea MB, Courtois A, Krisa S, Richard T, Ruiz-Sanz JI. Screening of Natural Stilbene Oligomers from Vitis vinifera for Anticancer Activity on Human Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2020; 9:antiox9060469. [PMID: 32492881 PMCID: PMC7346113 DOI: 10.3390/antiox9060469] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The characterization of bioactive resveratrol oligomers extracted from Vitis vinifera canes has been recently reported. Here, we screened six of these compounds (ampelopsin A, trans-ε-viniferin, hopeaphenol, isohopeaphenol, R2-viniferin, and R-viniferin) for their cytotoxic activity to human hepatocellular carcinoma (HCC) cell lines p53 wild-type HepG2 and p53-null Hep3B. The cytotoxic efficacy depended on the cell line. R2-viniferin was the most toxic stilbene in HepG2, with inhibitory concentration 50 (IC50) of 9.7 ± 0.4 µM at 72 h, 3-fold lower than for resveratrol, while Hep3B was less sensitive (IC50 of 47.8 ± 2.8 µM). By contrast, hopeaphenol (IC50 of 13.1 ± 4.1 µM) and isohopeaphenol (IC50 of 26.0 ± 3.0 µM) were more toxic to Hep3B. Due to these results, and because it did not exert a large cytotoxicity in HH4 non-transformed hepatocytes, R2-viniferin was selected to investigate its mechanism of action in HepG2. The stilbene tended to arrest cell cycle at G2/M, and it also increased intracellular reactive oxygen species (ROS), caspase 3 activity, and the ratio of Bax/Bcl-2 proteins, indicative of apoptosis. The distinctive toxicity of R2-viniferin on HepG2 encourages research into the underlying mechanism to develop the oligostilbene as a therapeutic agent against HCC with a particular genetic background.
Collapse
Affiliation(s)
- Iris Aja
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.A.); (J.-I.R.-S.)
- Univ. Bordeaux, INRAE, UR Œnologie, EA 4577, USC 1366, ISVV, 210 Chemin de Leysotte, F 33882 Villenave d’Ornon, France; (A.C.); (S.K.); (T.R.)
| | - M. Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.A.); (J.-I.R.-S.)
- Correspondence: ; Tel.: +34-946-012-829
| | - Arnaud Courtois
- Univ. Bordeaux, INRAE, UR Œnologie, EA 4577, USC 1366, ISVV, 210 Chemin de Leysotte, F 33882 Villenave d’Ornon, France; (A.C.); (S.K.); (T.R.)
| | - Stéphanie Krisa
- Univ. Bordeaux, INRAE, UR Œnologie, EA 4577, USC 1366, ISVV, 210 Chemin de Leysotte, F 33882 Villenave d’Ornon, France; (A.C.); (S.K.); (T.R.)
| | - Tristan Richard
- Univ. Bordeaux, INRAE, UR Œnologie, EA 4577, USC 1366, ISVV, 210 Chemin de Leysotte, F 33882 Villenave d’Ornon, France; (A.C.); (S.K.); (T.R.)
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.A.); (J.-I.R.-S.)
| |
Collapse
|
9
|
Davaatseren M, Jo YJ, Hong GP, Hur HJ, Park S, Choi MJ. Studies on the Anti-Oxidative Function of trans-Cinnamaldehyde-Included β-Cyclodextrin Complex. Molecules 2017; 22:molecules22121868. [PMID: 29257084 PMCID: PMC6149916 DOI: 10.3390/molecules22121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 01/11/2023] Open
Abstract
trans-Cinnamaldehyde (tCIN), an active compound found in cinnamon, is well known for its antioxidant, anticancer, and anti-inflammatory activities. The β-cyclodextrin (β-CD) oligomer has been used for a variety of applications in nanotechnology, including pharmaceutical and cosmetic applications. Here, we aimed to evaluate the anti-inflammatory and antioxidant effects of tCIN self-included in β-CD complexes (CIs) in lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages. RAW 264.7 macrophages were treated with increasing concentrations of β-CD, tCIN, or CIs for different times. β-CD alone did not affect the production of nitric oxide (NO) or reactive oxygen species (ROS). However, both tCIN and CI significantly reduced NO and ROS production. Thus, CIs may have strong anti-inflammatory and antioxidant effects, similar to those of tCIN when used alone.
Collapse
Affiliation(s)
- Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University, Gyeonggi-do 17546, Korea.
| | - Yeon-Ji Jo
- Institute of Process Engineering in Life Science, Section I: Food Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul 05006, Korea.
| | - Haeng Jeon Hur
- Division of Metabolism and Functionality Research, Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13539, Korea.
| | - Sujin Park
- Division of Metabolism and Functionality Research, Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13539, Korea.
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neungdong-ro, Seoul 05029, Korea.
| |
Collapse
|
10
|
Zhang S, Ma J, Sheng L, Zhang D, Chen X, Yang J, Wang D. Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide-Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities. Front Pharmacol 2017; 8:872. [PMID: 29311915 PMCID: PMC5735979 DOI: 10.3389/fphar.2017.00872] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Septic acute kidney injury (AKI) causes high mortality in critical care units, and no effective therapy exists in clinical treatment. In the current study, water and ethanol extracts of Hydrangea paniculata (HP), a traditional Chinese medicinal plant, were used to test its renoprotective effects in a lipopolysaccharide (LPS)-induced murine model of septic AKI. Methods: C57BL/6 mice were orally pretreated with HP three times, and then intraperitoneal LPS injection was used to induce septic AKI. Blood from animals was collected for biochemical analysis and kidneys were obtained for pathological analysis. Kidney tissue homogenates were used to investigate the effect of HP on inflammation and oxidative stress. Immunohistochemistry was used to investigate tubular cell apoptosis. Flow cytometry was conducted to analyze leukocyte infiltration into the kidneys. Blood cell counts were used to analyze changes in peripheral leukocytes. In vitro studies with Ana1 and HK-2 cells stimulated by LPS were used to investigate the anti-inflammatory effects and inhibition of signaling pathways by HP. Results: HP significantly decreased blood urea nitrogen and plasma neutrophil gelatinase-associated lipocalin concentrations, as well as tubulointerstitium injuries in septic AKI mice. Moreover, HP administration improved animal survival following lethal LPS injections. HP ameliorated apoptosis of tubular cells by inhibiting the cleavage of caspase 3 and caspase 7. HP also showed pronounced antioxidant activity in AKI kidneys. HP showed anti-inflammatory effects by inhibiting the infiltration of neutrophils and macrophages into kidney tissues induced by LPS, as well as inhibiting the production of cytokines and chemokines. Possible molecular mechanisms included HP inhibition of NF-κB nuclear translocation in LPS-induced macrophages and tubular cells, and reduction of STAT3, STAT1, and ERK1/2 phosphorylation stimulated by LPS in vitro. Single acute toxicity tests confirmed that HP, even at 5 g/kg dosage, does not cause animal death. Pharmacokinetics also showed that coumarins from HP could be metabolized into two bioactive compounds, umbelliferone, and esculetin. Conclusions: HP extract may protect renal function in LPS-induced AKI by anti-inflammatory and antioxidant activities, and has potential in the critical care of AKI.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingzhi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Espinoza JL, Inaoka PT. Gnetin-C and other resveratrol oligomers with cancer chemopreventive potential. Ann N Y Acad Sci 2017; 1403:5-14. [PMID: 28856688 DOI: 10.1111/nyas.13450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Resveratrol has been extensively studied to investigate its biological effects, including its chemopreventive potential against cancer. Over the past decade, various resveratrol oligomers, both naturally occurring and synthetic, have been described. These resveratrol oligomers result from the polymerization of two or more resveratrol units to form dimers, trimers, tetramers, or even more complex derivatives. Some oligomers appear to have antitumor activities that are similar or superior to monomeric resveratrol. In this review, we discuss resveratrol oligomers with anticancer potential, with emphasis on well-characterized compounds, such as the dimer gnetin-C and other oligomers from Gnetum gnemon, whose safety, pharmacokinetic, and biological activities have been studied in humans.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Pleiades T Inaoka
- Department of Physical Therapy, School of Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Anti-Inflammatory Effects of Vitisinol A and Four Other Oligostilbenes from Ampelopsis brevipedunculata var. Hancei. Molecules 2017; 22:molecules22071195. [PMID: 28714918 PMCID: PMC6152071 DOI: 10.3390/molecules22071195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, the cytotoxicities and anti-inflammatory activities of five resveratrol derivatives-vitisinol A, (+)-ε-viniferin, (+)-vitisin A, (-)-vitisin B, and (+)-hopeaphenol-isolated from Ampelopsis brevipedunculata var. hancei were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, respectively. The result from MTT assay analysis indicated that vitisinol A has lower cytotoxicity than the other four well-known oligostilbenes. In the presence of vitisinol A (5 μM), the significant reduction of inflammation product (nitric oxide, NO) in LPS-induced RAW264.7 cells was measured using Griess reaction assay. In addition, the under-expressed inflammation factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced RAW264.7 cells monitored by Western blotting simultaneously suggested that vitisinol A has higher anti-inflammatory effect compared with other resveratrol derivatives. Finally, the anti-inflammatory effect of vitisinol A was further demonstrated on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema in mice. As a preliminary functional evaluation of natural product, the anti-inflammatory effect of vitisinol A is the first to be examined and reported by this study.
Collapse
|
13
|
Seo YS, Lee SJ, Li Z, Kang OH, Kong R, Kim SA, Zhou T, Song YS, Liu X, Kwon DY. Araliasaponin II isolated from leaves of Acanthopanax henryi (Oliv.) Harms inhibits inflammation by modulating the expression of inflammatory markers in murine macrophages. Mol Med Rep 2017; 16:857-864. [PMID: 28560427 DOI: 10.3892/mmr.2017.6656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
Abstract
Araliasaponin II (AS II) is a bioactive compound isolated from Acanthopanax henryi (Oliv.) Harms, a plant widely used in traditional oriental medicine. The present study investigated the anti‑inflammatory effects of AS II using murine macrophages. The effects of AS II on inflammatory mediator and cytokine production in lipopolysaccharide (LPS)‑stimulated RAW 264.7 cells was evaluated. Nitric oxide (NO) and cytokine production were determined using the Griess reagent and an ELISA kit. The expression levels of cytokines, inducible NO synthase (iNOS) and cyclooxygenase‑2 (COX‑2) mRNA were examined by reverse transcription‑quantitative polymerase chain reaction. The expression levels of iNOS, COX‑2 and toll‑like receptor (TLR)‑4 protein were examined by western blotting. Translocation of nuclear factor‑κB (NF‑κB) and TLR‑4 expression were visualized by immunofluorescence staining. AS II markedly inhibited the production of NO and prostaglandin E2, and reduced iNOS and COX‑2 expression at the transcriptional and translational levels. AS II downregulated the expression of interleukin‑6 and tumor necrosis factor‑α at the protein and mRNA levels. Furthermore, pre‑treatment with AS II significantly suppressed the TLR‑4‑NF‑κB signaling pathway; this effect may be cause by AS II competing with LPS for binding to TLR‑4 and subsequently inhibiting translocation of the NF‑κB/p65 protein to the nucleus. The results suggested that the anti‑inflammatory properties of AS II may result from inhibiting pro‑inflammatory mediators by suppressing the initiation of the inflammatory response and inhibiting TLR-4-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Seok-Jeon Lee
- Professional Graduate School of Oriental Medicine, Department of Third Medicine, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Zhi Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Yung-Sun Song
- Professional Graduate School of Oriental Medicine, Department of Third Medicine, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| | - Xiangqian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 570749, Republic of Korea
| |
Collapse
|
14
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Abstract
The purpose of this study was to evaluate the effects of polydatin (PD) on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions at protein and transcriptional levels, as well as the production of prostaglandin E2 (PGE2) and nitric oxide (NO) in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cells. To elucidate the underlying mechanism responsible for these symptoms, we investigated the phosphorylation of mitogen-activated protein kinase (MAPK) pathway and nuclear factor-κB (NF-κB) expression. NO was analyzed with the Griess method. PGE2 was measured by enzyme-linked immunosorbent assay (ELISA). iNOS and COX-2 messenger RNA (mRNA) were identified by qPCR assay. iNOS, COX-2, NF-κB, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 protein expressions were detected with Western blot. The results revealed that PD effectively inhibited NO and PGE2 production, and it is not surprising that PD reduced iNOS and COX-2 expression at protein and transcriptional levels. Additionally, PD significantly ameliorated the activation of NF-κB and the phosphorylation of MAPKs in LPS-induced RAW 264.7 macrophages. These findings suggested that PD exerted potent anti-inflammatory activity in macrophages.
Collapse
|
16
|
Choi KC, Cho SW, Kook SH, Chun SR, Bhattarai G, Poudel SB, Kim MK, Lee KY, Lee JC. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:55-65. [PMID: 26721217 DOI: 10.1016/j.jep.2015.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/08/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Water extract of Raphanus sativus L. (RSL) seeds was traditionally used to treat digestive inflammatory complaints in Korean culture. RSL seeds exerted antioxidant, anti-inflammatory, and anti-septic functions, suggesting their pharmacological potential for the treatment of inflammatory pathologies associated with oxidative stress such as inflammatory bowel disease. AIM OF THIS STUDY We evaluated the intestinal anti-inflammatory effects of RSL seed water extract (RWE) in experimental rat models of trinitrobenzenesulphonic acid (TNBS)- or dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS RWE was characterized by determining the content of sinapic acid as a reference material and then assayed in the DSS and TNBS models of rat colitis. Male Sprague-Dawley rats were divided into 10 groups (n=7/group): non-colitic control, DSS or TNBS control, DSS colitis groups treated with RWE (100mg/kg) or mesalazine (25mg/kg), and TNBS colitis groups treated with various doses (10, 40, 70, and 100mg/kg) of RWE or mesalazine (25mg/kg). RWE or mesalazine treatment started the same day of colitis induction and rats were sacrificed 24h after the last treatment followed by histological and biochemical analyses. RESULTS Oral administration with RWE suppressed intestinal inflammatory damages in both DSS- and TNBS-induced colitic rats. The treatment with 100mg/kg RWE recovered intestinal damages caused by TNBS or DSS to levels similar to that of mesalazine, decreasing the activity of myeloperoxidase activity and the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. RWE treatment inhibited malondialdehyde production and glutathione reduction in colon of colitis rats. The administration of RWE at dose of 100mg/kg also suppressed the TNBS- or DSS-stimulated expression of TNF-α, IL-1β, monocyte chemotactic protein-1, inducible nitric oxide, and intercellular adhesion molecule-1. Furthermore, RWE inhibited p38 kinase and DNA-nuclear factor-κB binding activities, both of which were stimulated in the colitic rats. CONCLUSIONS The current findings show that RWE ameliorates intestinal oxidative and inflammatory damages in DSS and TNBS models of rat colitis, suggesting its beneficial use for the treatment of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Ki-Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Cheonan, Chungnam 330-801, South Korea.
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711, South Korea.
| | - Sung-Ho Kook
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Sa-Ra Chun
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Govinda Bhattarai
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Sher Bahadur Poudel
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Min-Kook Kim
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Kyung-Yeol Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Jeong-Chae Lee
- Research Center of Bioactive Materials and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, South Korea; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
17
|
Hu W, Wang X, Wu L, Shen T, Ji L, Zhao X, Si CL, Jiang Y, Wang G. Apigenin-7-O-β-d-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct 2016; 7:1002-13. [DOI: 10.1039/c5fo01212k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro and in vivo anti-inflammatory activities of apigenin-7-O-β-d-glucuronide.
Collapse
Affiliation(s)
- Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Huaiyin Normal University
- Huaian 223300
- China
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Huaiyin Normal University
- Huaian 223300
- China
| | - Lei Wu
- Tianjin Key Laboratory of Pulp & Paper
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Huaiyin Normal University
- Huaian 223300
- China
| | - Lilian Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Huaiyin Normal University
- Huaian 223300
- China
| | - Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper
- Tianjin University of Science & Technology
- Tianjin 300457
- China
- State Key Laboratory of Tree Genetics and Breeding
| | - Yunyao Jiang
- Department of Medical Biotechnology
- College of Biomedical Science
- Kangwon National University
- Chuncheon 200-701
- Korea
| | - Gongcheng Wang
- Department of Urology
- Huai'an First People's Hospital
- Nanjing Medical University
- Huaian 223300
- China
| |
Collapse
|
18
|
Lee S, Yoon KD, Lee M, Cho Y, Choi G, Jang H, Kim B, Jung D, Oh J, Kim G, Oh J, Jeong Y, Kwon HJ, Bae SK, Min D, Windisch MP, Heo T, Lee C. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol 2016; 173:191-211. [PMID: 26445091 PMCID: PMC4813382 DOI: 10.1111/bph.13358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Hepatitis C virus (HCV) infection is responsible for various chronic inflammatory liver diseases. Here, we have identified a naturally occurring compound with anti-HCV activity and have elucidated its mode of antiviral action. EXPERIMENTAL APPROACH Luciferase reporter and real-time RT-PCR assays were used to measure HCV replication. Western blot, fluorescence-labelled HCV replicons and infectious clones were employed to quantitate expression levels of viral proteins. Resistant HCV mutant mapping, in vitro NS3 protease, helicase, NS5B polymerase and drug affinity responsive target stability assays were also used to study the antiviral mechanism. KEY RESULTS A resveratrol tetramer, vitisin B from grapevine root extract showed high potency against HCV replication (EC50 = 6 nM) with relatively low cytotoxicity (EC50 >10 μM). Combined treatment of vitisin B with an NS5B polymerase inhibitor (sofosbuvir) exhibited a synergistic or at least additive antiviral activity. Analysis of a number of vitisin B-resistant HCV variants suggested an NS3 helicase as its potential target. We confirmed a direct binding between vitisin B and a purified NS3 helicase in vitro. Vitisin B was a potent inhibitor of a HCV NS3 helicase (IC50 = 3 nM). In vivo, Finally, we observed a preferred tissue distribution of vitisin B in the liver after i.p. injection in rats, at clinically attainable concentrations. Conclusion and Implications Vitisin B is one of the most potent HCV helicase inhibitors identified so far. Vitisin B is thus a prime candidate to be developed as the first HCV drug derived from natural products.
Collapse
Affiliation(s)
- Sungjin Lee
- College of PharmacyDongguk UniversityGoyangKorea
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Myungeun Lee
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Yoojin Cho
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Gahee Choi
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Hongje Jang
- Department of ChemistrySeoul National UniversitySeoulKorea
| | - BeomSeok Kim
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Da‐Hee Jung
- Department of Bio and Nano ChemistryKookmin UniversitySeoulKorea
| | - Jin‐Gyo Oh
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Geon‐Woo Kim
- Department of BiotechnologyYonsei UniversitySeoulKorea
| | - Jong‐Won Oh
- Department of BiotechnologyYonsei UniversitySeoulKorea
| | - Yong‐Joo Jeong
- Department of Bio and Nano ChemistryKookmin UniversitySeoulKorea
| | - Ho Jeong Kwon
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Dal‐Hee Min
- Department of ChemistrySeoul National UniversitySeoulKorea
| | - Marc P Windisch
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Tae‐Hwe Heo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Choongho Lee
- College of PharmacyDongguk UniversityGoyangKorea
| |
Collapse
|
19
|
Ji GQ, Chen RQ, Wang L. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharmacol Immunotoxicol 2015; 38:98-102. [DOI: 10.3109/08923973.2015.1122617] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Catechin-7-O- β -D-glucopyranoside isolated from the seed of Phaseolus calcaratus Roxburgh ameliorates experimental colitis in rats. Int Immunopharmacol 2015; 29:521-527. [DOI: 10.1016/j.intimp.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
21
|
Neacsu P, Mazare A, Schmuki P, Cimpean A. Attenuation of the macrophage inflammatory activity by TiO₂ nanotubes via inhibition of MAPK and NF-κB pathways. Int J Nanomedicine 2015; 10:6455-67. [PMID: 26491301 PMCID: PMC4608594 DOI: 10.2147/ijn.s92019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity.
Collapse
Affiliation(s)
- Patricia Neacsu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- Department of Materials Science, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
22
|
Keylor MH, Matsuura BS, Stephenson CRJ. Chemistry and Biology of Resveratrol-Derived Natural Products. Chem Rev 2015; 115:8976-9027. [PMID: 25835567 PMCID: PMC4566929 DOI: 10.1021/cr500689b] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell H Keylor
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Bryan S Matsuura
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Chen T, Mou Y, Tan J, Wei L, Qiao Y, Wei T, Xiang P, Peng S, Zhang Y, Huang Z, Ji H. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2015; 25:55-64. [PMID: 25614226 DOI: 10.1016/j.intimp.2015.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/10/2014] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yi Mou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Jiani Tan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Linlin Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yixue Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Tingting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Pengjun Xiang
- School of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
24
|
Eo HJ, Park JH, Park GH, Lee MH, Lee JR, Koo JS, Jeong JB. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:200. [PMID: 24962785 PMCID: PMC4074313 DOI: 10.1186/1472-6882-14-200] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022]
Abstract
Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity.
Collapse
|
25
|
Anti-Inflammatory Effects of an Ethanolic Extract of Guava (Psidium guajava L.) Leaves In Vitro and In Vivo. J Med Food 2014; 17:678-85. [DOI: 10.1089/jmf.2013.2936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Lin Y, Wang F, Yang LJ, Chun Z, Bao JK, Zhang GL. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum. PHYTOCHEMISTRY 2013; 95:242-51. [PMID: 24042064 DOI: 10.1016/j.phytochem.2013.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/03/2013] [Accepted: 08/03/2013] [Indexed: 05/16/2023]
Abstract
Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways.
Collapse
Affiliation(s)
- Yuan Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Sung MJ, Davaatseren M, Kim SH, Kim MJ, Hwang JT. Boehmeria nivea attenuates LPS-induced inflammatory markers by inhibiting p38 and JNK phosphorylations in RAW264.7 macrophages. PHARMACEUTICAL BIOLOGY 2013; 51:1131-1136. [PMID: 23750815 DOI: 10.3109/13880209.2013.781196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Boehmeria nivea (Linn.) Gaudich (Urticaceae), a natural herb, has a long history of treating several diseases including wound healing. However, the anti-inflammatory effect of B. nivea has not been investigated. OBJECTIVE We investigated whether the 70% ethanol extract of B. nivea (Ebn) can exert anti-inflammatory activity. Several phenolic compounds of extracts were determined to provide further information on the correlation between anti-inflammatory effects and phenolic compounds. MATERIALS AND METHODS We prepared a 70% ethanol extract of B. nivea leaves and evaluated its anti-inflammatory activity (200, 400, 800, 1200 µg/mL) by measuring the secretions of nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), which were stimulated by lipopolysaccharide (LPS) in RAW264.7 macrophages. The total phenolic compounds were determined by the Folin-Ciocalteu method and major compounds were determined by HPLC. RESULTS Ebn was able to abolish the LPS-induced secretions of NO, TNF-α and IL-6. It also decreased the protein levels (IC₅₀ = 186 µg/mL) of LPS-induced inducible nitric oxide synthase (iNOS). The LPS stimulated p38, JNK and ERK phosphorylations significantly more than the controls. Surprisingly, although Ebn reduced p38 and JNK phosphorylations, it did not influence ERK phosphorylation. We found that Ebn revealed several major compounds such as chlorogenic acid (1.96 mg/100 g), rutin (46.48 mg/100 g), luteolin-7-glucoside (11.29 mg/100 g), naringin (1.13 mg/100 g), hesperidin (23.69 mg/100 g) and tangeretin (1.59 mg/100 g). DISCUSSION AND CONCLUSION Boehmeria nivea exerts an anti-inflammatory effect on macrophages by inhibiting p38 and JNK, suggesting that it may be used as a functional ingredient against inflammation.
Collapse
Affiliation(s)
- Mi Jeong Sung
- Korea Food Research Institute, Seongnam, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol suppresses the expression of inflammatory marker genes in D-galactosamine-hepatotoxic rats. ASIAN PAC J TROP MED 2013; 6:205-11. [DOI: 10.1016/s1995-7645(13)60024-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/27/2012] [Accepted: 01/28/2013] [Indexed: 11/16/2022] Open
|
29
|
Pawlus AD, Sahli R, Bisson J, Rivière C, Delaunay JC, Richard T, Gomès E, Bordenave L, Waffo-Téguo P, Mérillon JM. Stilbenoid profiles of canes from Vitis and Muscadinia species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:501-11. [PMID: 23270496 DOI: 10.1021/jf303843z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present stilbenoid profiles of canes from 16 grapevines. Fifteen stilbenoids were obtained through isolation and structure identification using MS, NMR, and [α](D) or as commercial standards. An HPLC-UV method for the simultaneous quantification of nine of these stilbenoids was developed and applied to canes of Vitis amurensis, Vitis arizonica, Vitis berlandieri, Vitis betulifolia, Vitis cinerea, Vitis × champini, Vitis × doaniana, Vitis labrusca, Vitis candicans (syn. Vitis mustangensis), Vitis riparia, Vitis rupestris, Vitis vinifera, Muscadinia rotundifolia, and a V. vinifera × M. rotundifolia hybrid. In these species, E-ampelopsin E, E-amurensin B, E-piceid, E-piceatannol, E-resveratrol, E-resveratroloside, E-ε-viniferin, E-ω-viniferin, and E-vitisin B were quantified, when found in sufficient amounts. Total concentrations ranged from ~2.2 to 19.5 g/kg of dry weight. Additional stilbenoids, E-3,5,4'-trihydroxystilbene 2-C-glucoside, Z-ampelopsin E, Z-trans-miyabenol C, E-trans-miyabenol C, scirpusin A, and Z-vitisin B, were identified but not quantified. Our results indicate that canes, particularly those of non-vinifera species, have substantial quantities of valuable, health-promoting stilbenoids.
Collapse
Affiliation(s)
- Alison D Pawlus
- Université de Bordeaux , ISVV, Groupe d'Etude des Substances Végétales à Activité Biologique, EA 3675, Villenave d'Ornon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Han S, Lee JH, Kim C, Nam D, Chung WS, Lee SG, Ahn KS, Cho SK, Cho M, Ahn KS. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacol Immunotoxicol 2012; 35:34-42. [PMID: 23131135 DOI: 10.3109/08923973.2012.736522] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aerial parts of Artemisia capillaris (Compositae) have been used in traditional Korean medicine as a cholagogic, antipyretic, anti-inflammatory, and diuretic purposes. In our previous study, ethanolic extracts of the plant demonstrated a marked anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (J. Korean Soc. Appl. Biol. Chem., 2010, 53, 275-282). In the present study, capillarisin (CPS), a flavone, main constituent of A. capillaris, was examined for its anti-inflammatory activity in the cells. We found that CPS highly suppressed LPS-induced nitric oxide (NO) without exerting cytotoxic effects on RAW 264.7 cells. CPS inhibited the expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and their mRNA in a dose-dependent manner. Also, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and prostaglandin E(2) (PGE(2)) secretion were decreased by CPS in LPS-stimulated macrophages. As a result, CPS inhibited proinflammatory cytokines, iNOS, and COX-2, which is attributed to the suppression of LPS-induced ERK, JNK, and nuclear factor-κB (NF-κB) activation. Therefore, we demonstrate here that CPS potentially inhibits the biomarkers related to inflammation through the abrogation of ERK, JNK, and NF-κB p65 activation, and it may be a potential therapeutic candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Suckbae Han
- College of Oriental Medicine and Institute of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, He Y, Liu J, Zhang ZJ, Sun J, Lu D. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 2012; 7:e44107. [PMID: 22952890 PMCID: PMC3432093 DOI: 10.1371/journal.pone.0044107] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells. Methodology/Principal Findings Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1. Conclusion and Implications This investigation demonstrates that PI3-K/Akt activation is an important signaling in resveratrol-mediated activation of AMPK phosphorylation and SIRT1 expression, and inhibition of phosphorylation of CREB and MAPKs activation, proinflammatory mediators and cytokines production in response to LPS in RAW 264.7 cells.
Collapse
Affiliation(s)
- Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Shu Deng
- Department of Respiratory Medicine, The Third People’s of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Dong Zhan
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yuan-Li Chen
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Ying He
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jing Liu
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Zong-Ji Zhang
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| | - Jun Sun
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- * E-mail: (DL); (JS); (ZJZ)
| |
Collapse
|
32
|
Jang SH, Lee EK, Lim MJ, Hong NJ, Oh IS, Jin YW, Jeong HS, Jeong YS, Lee JC, Jang YS. Suppression of lipopolysaccharide-induced expression of inflammatory indicators in RAW 264.7 macrophage cells by extract prepared from Ginkgo biloba cambial meristematic cells. PHARMACEUTICAL BIOLOGY 2012; 50:420-428. [PMID: 22129367 DOI: 10.3109/13880209.2011.610805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Ginkgo biloba L. (Ginkgoaceae) leaves have been used as an herbal medicine that has a complex range of biological activities. However, when we consider that biological activity of plant extracts is highly variable according to the source, location, and harvest season, technology to obtain the natural products with homogeneity is extremely important. OBJECTIVE We established the technology to obtain the cambial meristematic cells (CMCs) of Ginkgo biloba, which were expanded in vitro with homogeneity through a suspension culture and then determined the anti-inflammatory activity of fractionated samples prepared from the ethanol extract of CMCs. MATERIALS AND METHODS We determined the anti-inflammatory activity of samples using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Especially, influence of sample treatment on the expression of various indicators, such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein (MAP) kinases, transcription factor, and cytokines, involved in inflammatory activity was assessed. RESULTS A fractionated sample demonstrated 53.4% inhibition of LPS-induced NO production from the cells. Additionally, when fractionated samples were treated, iNOS and COX-2 expressions were almost completely suppressed. Fractionated samples also inhibited the phosphorylation of LPS-induced extracellular signal-regulated (ERK) and p38 MAP kinases more than 60%. IκB phosphorylation and subsequent nuclear factor (NF)-κB activation were also suppressed by fractionated samples. The expression of pro-inflammatory cytokines, IL-6 and tumor necrosis factor (TNF)-α, was significantly inhibited by the sample treatment. DISCUSSION AND CONCLUSION Fractionated samples from the ethanol extract of Ginkgo biloba CMCs could potentially be the source of a powerful anti-inflammatory substance.
Collapse
Affiliation(s)
- Sun-Hee Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Additive, antagonistic, and synergistic effects of procyanidins and polyunsaturated fatty acids over inflammation in RAW 264.7 macrophages activated by lipopolysaccharide. Nutrition 2012; 28:447-57. [DOI: 10.1016/j.nut.2011.07.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/11/2011] [Accepted: 07/29/2011] [Indexed: 11/21/2022]
|
34
|
Lee HJ, Jung H, Kwon J, Li H, Lee DY, Lim HJ, Kim MR, Moon DC, Ryu JH. A germacranolide sesquiterpene lactone suppressed inducible nitric oxide synthase by downregulating NF-κB activity. Can J Physiol Pharmacol 2012; 89:232-7. [PMID: 21423297 DOI: 10.1139/y11-004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A germacranolide sesquiterpene lactone, 2α,5-epoxy-5,10-dihydroxy-6α-angeloyloxy-9β-(3-methylbutyloxy)-germacran-8α,12-olide (EDAG), isolated from Carpesium triste var. manshuricum, showed inhibitory activity in the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) mRNA and protein in LPS-activated macrophage cells. Molecular analysis reveals that these suppressive effects are correlated with the inhibition of NF-κB activation by EDAG. Immunoblotting showed that EDAG suppressed the LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Furthermore, EDAG showed reduced phosphorylation of ERK1/2 and p38 MAPK, whereas activation of JNK was not changed. These data suggest, at least in part, that EDAG utilizes the signal cascades of ERK1/2, p38 MAPK, and NF-κB for the suppression of iNOS gene expression.
Collapse
Affiliation(s)
- Hwa Jin Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Enhanced anti-inflammatory effect of resveratrol and EPA in treated endotoxin-activated RAW 264.7 macrophages. Br J Nutr 2012; 108:1562-73. [DOI: 10.1017/s0007114511007057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.
Collapse
|
36
|
ETS-GS, a New Anti-Oxidative Drug, Protects Against Lipopolysaccharide-Induced Acute Lung and Liver Injury. J Surg Res 2011; 171:734-41. [DOI: 10.1016/j.jss.2010.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/17/2010] [Accepted: 04/06/2010] [Indexed: 02/03/2023]
|
37
|
Kim MS, Lee MS, Kown DY. Inflammation-mediated obesity and insulin resistance as targets for nutraceuticals. Ann N Y Acad Sci 2011; 1229:140-6. [PMID: 21793849 DOI: 10.1111/j.1749-6632.2011.06098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity-induced inflammation plays an important role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic dysfunctions. Chronic activation of proinflammatory pathways within insulin target cells can lead to obesity-related insulin resistance. The inflammatory mediators consist of immune cells, cytokines, adipokines, and inflammatory signaling molecules. Targeting obesity-associated inflammation has been shown to protect experimental animals and human subjects from obesity-induced insulin resistance. Modulation of the inflammatory responses associated with obesity may help prevent or improve obesity-induced metabolic dysfunctions. In this review, we introduce the beneficial effects of nutraceuticals for targeting inflammation in the treatment of obesity-induced insulin resistance and metabolic dysfunctions.
Collapse
Affiliation(s)
- Myung-Sunny Kim
- Korea Food Research Institute, Gyongki-do, Republic of Korea
| | | | | |
Collapse
|
38
|
de David C, Rodrigues G, Bona S, Meurer L, González-Gallego J, Tuñón MJ, Marroni NP. Role of quercetin in preventing thioacetamide-induced liver injury in rats. Toxicol Pathol 2011; 39:949-57. [PMID: 21885874 DOI: 10.1177/0192623311418680] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In hepatic toxicity induced in rats by two injections of thioacetamide (TAA, 350 mg/kg with an interval of 8 hr), the action of quercetin was investigated. After 96 hr, TAA administration resulted in hepatic necrosis, significant increases in serum transaminase activity, and increases in hepatic lipoperoxidation. Thioacetamide-induced hepatotoxicity also showed changes in antioxidant enzymes in the liver of rats, with alterations in p-ERK 1/2 (phosphorylated extracellular-signal related kinase 1/2) as well as an imbalance between proapototic protein Bax and anti-apoptotic protein Bcl-2 expression. With administration of the flavonoid quercetin (50 mg/Kg i.p.) for four consecutive days following TAA, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity were close to normal values in rats. Histological findings suggested that quercetin had a preventive effect on TAA-induced hepatic necrosis. Quercetin treatment caused significant decreases in lipid peroxide levels in the TAA-treated rats, with some changes in antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Quercetin also inhibited the change of the p-ERK1/2 by TAA and significantly prevented the increase in Bax/Bcl-2 ratio, thus preventing apoptosis. Findings indicate that quercetin may have a preventive effect on TAA-induced hepatotoxicity by modulating the oxidative stress parameters and apoptosis pathway.
Collapse
Affiliation(s)
- Cíntia de David
- Laboratory of Experimental Hepatology and Physiology, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Lee G, Choi TW, Kim C, Nam D, Lee SG, Jang HJ, Lee JH, Um JY, Jung SH, Shim BS, Ahn KS, Ahn KS. Anti-inflammatory activities of Reynoutria elliptica through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Immunopharmacol Immunotoxicol 2011; 34:454-64. [PMID: 21961440 DOI: 10.3109/08923973.2011.619195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reynoutria elliptica has been used in traditional Korean medicine to promote blood circulation, relieve pain, increase dieresis, and alleviate respiratory problems, through as yet undefined mechanisms. We set out to determine whether the anti-inflammatory effects of this plant are linked with its ability to suppress mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation in lipopolysaccharide (LPS)-activated RAW 264.7 cells. We found for the first time that the hexane fraction of Reynoutria elliptica (HRE) significantly inhibited LPS-stimulated NO and PGE2 synthesis. This is due to the diminishing of the mRNA and protein expression of iNOS and COX-2, respectively. HRE also suppressed LPS-stimulated TNF-α secretion in a dose-dependent manner, which might be due to the suppression of LPS-induced MAPKs and NF-κB activation. Moreover, our HPLC data demonstrated that the major components of the HRE were bioactive compounds such as emodin-6-Glc, emodin, and physcion. Overall, our results indicate that Reynoutria elliptica could be provided as a potential candidate for anti-inflammation treatment.
Collapse
Affiliation(s)
- Geumho Lee
- College of Oriental Medicine and Institute of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Red bean extract reduces inflammation and increases survival in a murine sepsis model. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0153-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Lee EJ, Kim C, Kim JY, Kim SM, Nam D, Jang HJ, Kim SH, Shim BS, Ahn KS, Choi SH, Jung SH, Ahn KS. Inhibition of LPS-induced inflammatory biomarkers by ethyl acetate fraction ofPatrinia scabiosaefoliathrough suppression of NF-κB activation in RAW 264.7 cells. Immunopharmacol Immunotoxicol 2011; 34:282-91. [DOI: 10.3109/08923973.2011.602412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Kim JY, Kim HJ, Kim SM, Park KR, Jang HJ, Lee EH, Jung SH, Ahn KS. Methylene chloride fraction of the leaves of Thuja orientalis inhibits in vitro inflammatory biomarkers by blocking NF-κB and p38 MAPK signaling and protects mice from lethal endotoxemia. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:687-695. [PMID: 21040769 DOI: 10.1016/j.jep.2010.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/07/2010] [Accepted: 10/23/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Thuja orientalis (TO) has been a recognized herbal medicine across Northeast Asian countries for thousands of years and used for the treatment of various inflammatory diseases through as yet undefined mechanisms. In this study, we set out to determine whether the anti-inflammatory effects of this plant are mediated to suppress mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS AND METHODS RAW 264.7 cells were pretreated with the methylene chloride fraction of TO (MTO) and stimulated with LPS. Nitric oxide (NO) release was determined by the accumulation of nitrite in the culture supernatants and tumor necrosis factor-α (TNF-α) and IL-6 secretion were determined by immunoenzymatic assay. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were evaluated via RT-PCR and Western blotting. NF-κB activation was also evaluated by reporter gene assay and electrophoretic mobility shift assay (EMSA). In addition, the protective effect of MTO was evaluated by use of the LPS-induced endotoxin shock model in mice. RESULTS We found that MTO significantly suppressed LPS-stimulated NO and IL-6 production without affecting cell viability. MTO inhibited the expression of LPS-induced iNOS and COX-2 protein and their mRNA expression. Also, TNF-α and IL-6 secretion were decreased by MTO in both PMA and ionomycin-stimulated splenocytes. As a result, MTO inhibited pro-inflammatory cytokines such as TNF-α and IL-6, which is hypothesized as being due to the suppression of LPS-induced p38 MAPK and NF-κB activation. Moreover, MTO improved the survival rate during lethal endotoxemia by inhibiting the production of TNF-α in an animal model and our LC-MS analysis showed that a major component of MTO was pinusolide. CONCLUSIONS We demonstrate here the evidence that the methylene chloride fraction of Thuja orientalis (MTO) potentially inhibits the biomarkers related to inflammation in vitro and in vivo, and might be provided as a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Oriental Pathology, College of Oriental Medicine and Institute of Oriental Medicine, Kyung Hee University, 1 Hoegidong Dongdaemungu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fang M, Lee SY, Park SM, Choi KC, Lee YJ, Cho HK, Cho SW, Whang WK, Lee JC. Anti-inflammatory potential of Phaseolus calcaratus Roxburgh, a oriental medicine, on LPS-stimulated RAW 264.7 macrophages. J Pharm Pharmacol 2010; 63:120-8. [DOI: 10.1111/j.2042-7158.2010.01162.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Objectives
The seed of Phaseolus calcaratus Roxburgh (PHCR) has traditionally been used as a herbal medicine, considered to have anti-inflammatory potential. Here we examined the ability of PHCR seed extract to inhibit inflammatory responses of macrophages to bacterial toxin and the mechanism involved.
Methods
In the present study, we prepared four fractions from an ethanol extract of PHCR seed and investigated their effects on the production of nitric oxide and cytokines, and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells.
Key findings
The fractions inhibited LPS-induced nitric oxide production and cyclooxygenase-2 (COX-2) expression in the cells. The ethyl acetate fraction at 100 µg/ml almost completely suppressed NO production, iNOS and COX-2 expression, and TNF-α and IL-6 secretion in cells stimulated with LPS. The fraction also inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and p38 in LPS-stimulated cells with the attendant suppression of IκBα nuclear translocation and nuclear factor (NF)-κB activation. Furthermore, PHCR seed extracts contained a large number of phenolic compounds having antioxidant potentials against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and hydroxyl radicals. We identified catechin-7-O-β-d-glucopyranoside as one of the active compounds responsible for the biological activity of PHCR seed extract.
Conclusions
These results suggest for the first time that ethanol extracts from PHCR seed have anti-inflammatory potential on LPS-stimulated macrophages through the down-regulation of ERK/p38- and NF-κB-mediated signalling pathways.
Collapse
Affiliation(s)
- Minghao Fang
- Department of Orthodontics and Institute of Oral Biosciences, BK21 program and School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Seung-Youp Lee
- Department of Dentistry, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Seung-Moon Park
- Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan, Republic of Korea
| | - Young Jae Lee
- Center for Health Care Technology development, HanPoong Pharmaceutical Co. Ltd, Jeonju, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyoung-Kwon Cho
- Center for Health Care Technology development, HanPoong Pharmaceutical Co. Ltd, Jeonju, Republic of Korea
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan, Republic of Korea
| | - Wan Kyunn Whang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jeong-Chae Lee
- Department of Orthodontics and Institute of Oral Biosciences, BK21 program and School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
44
|
DietaryRRR-α-tocopherol succinate attenuates lipopolysaccharide-induced inflammatory cytokines secretion in broiler chicks. Br J Nutr 2010; 104:1796-805. [DOI: 10.1017/s0007114510002801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The anti-inflammatory effects of two esters of α-tocopherol (α-TOH),all-rac-α-TOH acetate (dl-α-TOA) andRRR-α-TOH succinate (d-α-TOS), on broilers repeatedly challenged with lipopolysaccharide (LPS) were investigated. Three hundred and twenty 1-d-old broiler chicks were allotted into four treatment groups and fed on a control diet (30 mg/kgdl-α-TOA) or diets containing 10, 30, 50 mg/kgd-α-TOS. Half of the birds from each treatment group were challenged with 0·9 % NaCl solution or LPS (250 μg/kg body weight) at 16, 18 and 20 d of age. The results indicated that the pretreatment of birds with 50 mg/kgd-α-TOS markedly reduced serum PGE2secretion and increased the concentrations of serum or hepatic α-TOH. When LPS-challenged birds were pretreated with 30 or 50 mg/kgd-α-TOS, the increases of plasma and splenic concentrations of interferon-γ, IL-1β, IL-2, IL-6, IL-4 and IL-10 were dramatically attenuated. Also, a significant decrease of hepatic reactive oxygen species (ROS) and hepatic or splenic phosphokinase C (PKC) activities was found in birds pretreated with 30 or 50 mg/kgd-α-TOS. Furthermore,d-α-TOS inhibited the activation of NF-κB by preventing the degradation of inhibitory-κBα. In conclusion, D-α-TOS is able to prevent LPS-induced inflammation responsein vivo.The beneficial effect may depend on suppressing the secretion of various plasma and splenic inflammatory mediators through inhibiting NF-κB activation and by blocking ROS signalling, in which PKC may play an assistant role.
Collapse
|
45
|
Liu Q, Shen WF, Sun HY, Fan DF, Nakao A, Cai JM, Yan G, Zhou WP, Shen RX, Yang JM, Sun XJ. Hydrogen-rich saline protects against liver injury in rats with obstructive jaundice. Liver Int 2010; 30:958-68. [PMID: 20492513 DOI: 10.1111/j.1478-3231.2010.02254.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hydrogen selectively reduces levels of hydroxyl radicals and alleviates acute oxidative stress in many models. Hydrogen-rich saline provides a high concentration of hydrogen that can be easily and safely applied. AIMS In this study, we investigated the effects of hydrogen-rich saline on the prevention of liver injury induced by obstructive jaundice in rats. METHODS Male Sprague-Dawley rats (n=56) were divided randomly into four experimental groups: sham operated, bile duct ligation (BDL) plus saline treatment [5 ml/kg, intraperitoneal (i.p.)], BDL plus low-dose hydrogen-rich saline treatment (5 ml/kg, i.p.) and BDL plus high-dose hydrogen-rich saline treatment (10 ml/kg, i.p.). RESULTS The liver damage was evaluated microscopically 10 days after BDL. Serum alanine aminotransferase and aspartate aminotransferase levels, tissue malondialdehyde content, myeloperoxidase activity, tumour necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and high-mobility group box 1 levels were all increased significantly by BDL. Hydrogen-rich saline reduced levels of these markers and relieved morphological liver injury. Additionally, hydrogen-rich saline markedly increased the activities of anti-oxidant enzymes superoxide dismutase and catalase and downregulated extracellular signal-regulated protein kinase (ERK)1/2 activation. CONCLUSIONS Hydrogen-rich saline attenuates BDL-induced liver damage, possibly by the reduction of inflammation and oxidative stress and the inhibition of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Qu Liu
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jeong JB, Jeong HJ. Rheosmin, a naturally occurring phenolic compound inhibits LPS-induced iNOS and COX-2 expression in RAW264.7 cells by blocking NF-κB activation pathway. Food Chem Toxicol 2010; 48:2148-53. [DOI: 10.1016/j.fct.2010.05.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/02/2010] [Accepted: 05/07/2010] [Indexed: 11/27/2022]
|
47
|
Zhang L, Li HZ, Gong X, Luo FL, Wang B, Hu N, Wang CD, Zhang Z, Wan JY. Protective effects of Asiaticoside on acute liver injury induced by lipopolysaccharide/D-galactosamine in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:811-819. [PMID: 20171071 DOI: 10.1016/j.phymed.2010.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/05/2009] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
Asiaticoside (AS), a triterpenoid product isolated from Centella asiatica, has been described to exhibit anti-in fl ammatory activities in several inflammatory models. However, the effects of AS on liver injury are poorly understood. The present study was undertaken to investigate whether AS is efficacious against Lipopolysaccharide (LPS) /D-galactosamine (D-GalN)-induced acute liver injury in mice and its potential mechanisms. AS (5, 10 and 20 mg/kg/d) was pretreated orally once daily for 3 days before LPS/D-GalN injected in mice. The mortality, hepatic tissue histology, plasma levels of Tumor necrosis factor-alpha (TNF-alpha) and alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic tissue TNF-alpha and caspase-3 activity were measured. Besides, western blotting analysis of phospho-p38 mitogen-activated protein kinase (phospho-p38 MAPK), phospho-c-jun N-terminal kinase (phospho-JNK) and phospho-extracellular signal regulated kinase (phospho-ERK) were determined. As a result, AS showed significant protection as evidenced by the decrease of elevated aminotransferases, hepatocytes apoptosis and caspase-3, alleviation of mortality and improvement of liver pathological injury in a dose-dependent manner. Further, we found that AS dose-dependently reduced the elevation of phospho-p38 MAPK, phospho-JNK, phospho-ERK protein and TNF-alpha mRNA expression in liver tissues and plasma TNF-alpha. These results suggest that AS has remarkable hepatoprotective effects on LPS/D-GalN-induced liver injury and the possible mechanism is related to inhibition of TNF-alpha and MAPKs.
Collapse
Affiliation(s)
- Li Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee HJ, Choi TW, Kim HJ, Nam D, Jung SH, Lee EH, Lee HJ, Shin EM, Jang HJ, Ahn KS, Shim BS, Choi SH, Kim SH, Sethi G, Ahn KS. Anti-Inflammatory Activity of Angelica keiskei Through Suppression of Mitogen-Activated Protein Kinases and Nuclear Factor-κB Activation Pathways. J Med Food 2010; 13:691-9. [DOI: 10.1089/jmf.2009.1271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hyoung Joo Lee
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Won Choi
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dongwoo Nam
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- Natural Products Research Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Republic of Korea
| | - Eun Ha Lee
- Natural Products Research Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Republic of Korea
| | - Hee Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung, Republic of Korea
| | - Eun Myoung Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeung-Jin Jang
- Department of Biochemistry, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyoo Seok Ahn
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Hoon Choi
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 2010; 633:78-84. [PMID: 20132809 DOI: 10.1016/j.ejphar.2010.01.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and upregulation of inflammatory mediators. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumour and immunomodulatory activities. The aim of this study was to investigate the effect of dietary resveratrol on chronic dextran sulphate sodium (DSS)-induced colitis. Six-week-old mice were randomized into two dietary groups: one standard diet and the other enriched with resveratrol at 20mg/kg of diet. After 30days, mice were exposed to 3% DSS for 5days developing acute colitis that progressed to severe chronic inflammation after 21days of water. Our results demonstrated that resveratrol group significantly attenuated the clinical signs such as loss of body weight, diarrhea and rectal bleeding improving results from disease activity index and inflammatory score. Moreover, the totality of resveratrol-fed animals survived and finished the treatment while animals fed with standard diet showed a mortality of 40%. Three weeks after DSS removal, the polyphenol caused substantial reductions of the rise of pro-inflammatory cytokines, TNF-alpha and IL-1beta and an increase of the anti-inflammatory cytokine IL-10. Also resveratrol reduced prostaglandin E synthase-1 (PGES-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins expression, via downregulation of p38, a mitogen-activated protein kinases (MAPK) signal pathway. We conclude that resveratrol diet represents a novel approach to the treatment of chronic intestinal inflammation.
Collapse
|
50
|
Lee HJ, Lim HJ, Lee DY, Jung H, Kim MR, Moon DC, Kim KI, Lee MS, Ryu JH. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-κBα degradation in RAW 264.7 cells. Biochem Biophys Res Commun 2010; 391:1400-4. [DOI: 10.1016/j.bbrc.2009.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
|