1
|
Rotondo F, Ho-Palma AC, Romero MDM, Remesar X, Fernández-López JA, Alemany M. Higher lactate production from glucose in cultured adipose nucleated stromal cells than for rat adipocytes. Adipocyte 2019; 8:61-76. [PMID: 30676233 PMCID: PMC6768231 DOI: 10.1080/21623945.2019.1569448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
White adipose tissue (WAT) nucleated stromal cells (NSC) play important roles in regulation, defense, regeneration and metabolic control. In WAT sites, the proportions and functions of NSC change under diverse physiological or pathologic conditions. We had previously observed the massive anaerobic wasting of glucose to lactate and glycerol in rat epididymal adipocytes. To test site variability, and whether the adipocyte extensive anaerobic metabolism of glucose was found in NSC, we analyzed, in parallel, subcutaneous, mesenteric and epididymal WAT of male adult Wistar rats. Adipocytes and NSC fractions, were isolated, counted and incubated (as well as red blood cells: RBC) with glucose, and their ability to use glucose and produce lactate, glycerol, and free fatty acids was measured. Results were computed taking into account the number of cells present in WAT samples. Cell numbers were found in proportions close to 1:13:100 (respectively, for adipocytes, NSC and RBC) but their volumes followed a reversed pattern: 7,500:10:1. When counting only non-fat cell volumes, the ratios changed dramatically to 100:10:1. RBC contribution to lactate production was practically insignificant. In most samples, NSC produced more lactate than adipocytes did, but only adipocytes secreted glycerol (and fatty acids in smaller amounts). Glucose consumption was also highest in NSC, especially in mesenteric WAT. The heterogeneous NSC showed a practically anaerobic metabolism (like that already observed in adipocytes). Thus, NSC quantitative production of lactate markedly contributed (i.e. more than adipocytes) to WAT global use (wasting) of glucose. We also confirmed that glucose-derived glycerol is exclusively produced by adipocytes.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
| | - Ana-Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| |
Collapse
|
2
|
Li Y, Zhu W, Zuo L, Shen B. The Role of the Mesentery in Crohn's Disease: The Contributions of Nerves, Vessels, Lymphatics, and Fat to the Pathogenesis and Disease Course. Inflamm Bowel Dis 2016; 22:1483-95. [PMID: 27167572 DOI: 10.1097/mib.0000000000000791] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a complex gastrointestinal disorder involving multiple levels of cross talk between the immunological, neural, vascular, and endocrine systems. The current dominant theory in CD is based on the unidirectional axis of dysbiosis-innate immunity-adaptive immunity-mesentery-body system. Emerging clinical evidence strongly suggests that the axis be bidirectional. The morphologic and/or functional abnormalities in the mesenteric structures likely contribute to the disease progression of CD, to a less extent the disease initiation. In addition to adipocytes, mesentery contains nerves, blood vessels, lymphatics, stromal cells, and fibroblasts. By the secretion of adipokines that have endocrine functions, the mesenteric fat tissue exerts its activity in immunomodulation mainly through response to afferent signals, neuropeptides, and functional cytokines. Mesenteric nerves are involved in the pathogenesis and prognosis of CD mainly through neuropeptides. In addition to angiogenesis observed in CD, lymphatic obstruction, remodeling, and impaired contraction maybe a cause and consequence of CD. Lymphangiogenesis and angiogenesis play a concomitant role in the progress of chronic intestinal inflammation. Finally, the interaction between neuropeptides, adipokines, and vascular and lymphatic endothelia leads to adipose tissue remodeling, which makes the mesentery an active participator, not a bystander, in the disease initiation and precipitation CD. The identification of the role of mesentery, including the structure and function of mesenteric nerves, vessels, lymphatics, and fat, in the intestinal inflammation in CD has important implications in understanding its pathogenesis and clinical management.
Collapse
Affiliation(s)
- Yi Li
- *Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; and †Center for Inflammatory Bowel Disease, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | | |
Collapse
|
3
|
Mustain WC, Starr ME, Valentino JD, Cohen DA, Okamura D, Wang C, Evers BM, Saito H. Inflammatory cytokine gene expression in mesenteric adipose tissue during acute experimental colitis. PLoS One 2013; 8:e83693. [PMID: 24386254 PMCID: PMC3873328 DOI: 10.1371/journal.pone.0083693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/15/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. METHODS Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes. RESULTS During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. CONCLUSIONS Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes.
Collapse
Affiliation(s)
- W. Conan Mustain
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marlene E. Starr
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph D. Valentino
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donald A. Cohen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daiki Okamura
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hiroshi Saito
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
4
|
Clemente TRL, Dos Santos AN, Sturaro JN, Gotardo EMF, de Oliveira CC, Acedo SC, Caria CREP, Pedrazzoli J, Ribeiro ML, Gambero A. Infliximab modifies mesenteric adipose tissue alterations and intestinal inflammation in rats with TNBS-induced colitis. Scand J Gastroenterol 2012; 47:943-50. [PMID: 22630819 DOI: 10.3109/00365521.2012.688213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Infliximab is a monoclonal anti-TNF-α antibody that is used therapeutically to treat Crohn's disease (CD). High levels of pro-inflammatory cytokines, especially TNF-α, have been observed in the gastrointestinal tract of CD patients and were associated with alterations in the mesenteric adipose tissue, which also contributed to the high levels of adipokine release. The authors used a rat model of colitis that produces mesenteric adipose tissue alterations that are associated with intestinal inflammation to study the effects that infliximab treatment has on adipokine production, morphological alterations in adipose tissue and intestinal inflammation. MATERIAL AND METHODS The ability of infliximab to neutralize rat TNF-α was evaluated in vitro using U937 cells. Colitis was induced by repeated intracolonic trinitrobenzene sulfonic acid instillations and was evaluated by macroscopic score, histopathological analysis, myeloperoxidase activity, TNF-α and IL-10 expression as well as iNOS (inducible NO synthase) expression and JNK phosphorylation in colon samples. The alterations in adipose tissue were assessed by TNF-α, IL-10, leptin, adiponectin and resistin levels as well as adipocyte size and peroxisome proliferator-activated receptor (PPAR)-γ expression. RESULTS Infliximab treatment controlled intestinal inflammation, which reduced lesions and neutrophil infiltration. Inflammatory markers, such as iNOS expression and JNK phosphorylation, were also reduced. In mesenteric adipose tissue, infliximab increased the production of IL-10 and resistin, which was associated with the restoration of adipocyte morphology and PPAR-γ expression. CONCLUSIONS Our results suggest that infliximab could contribute to the control of intestinal inflammation by modifying adipokine production by mesenteric adipose tissue.
Collapse
|
5
|
Transplantation of a mammary stromal cell line into a mammary fat pad: development of the site-specific in vivo analysis system for mammary stromal cells. Biosci Biotechnol Biochem 2011; 75:550-5. [PMID: 21389616 DOI: 10.1271/bbb.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.
Collapse
|
6
|
Methotrexate is effective in reactivated colitis and reduces inflammatory alterations in mesenteric adipose tissue during intestinal inflammation. Pharmacol Res 2009; 60:341-6. [DOI: 10.1016/j.phrs.2009.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/07/2009] [Accepted: 05/10/2009] [Indexed: 01/29/2023]
|