1
|
Omran E, Alzahrani AR, Ezzat SF, Ellithy G, Tarek M, Khairy E, Ghit MM, Elgeushy A, Ibrahim Al-Hazani TM, Aziz Ibrahim IA, Falemban AH, Bamagous GA, Elhawary NA, Jaremko M, Saied EM, Mohamed DI. Deciphering the therapeutic potential of trimetazidine in rheumatoid arthritis via targeting mi-RNA128a, TLR4 signaling pathway, and adenosine-induced FADD-microvesicular shedding: In vivo and in silico study. Front Pharmacol 2024; 15:1406939. [PMID: 38919260 PMCID: PMC11196411 DOI: 10.3389/fphar.2024.1406939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.
Collapse
Affiliation(s)
- Enas Omran
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar F. Ezzat
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada Ellithy
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Ghit
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Elgeushy
- Orthopedic Department, Faculty of Medicine, Alazhar University Hospitals, Cairo, Egypt
| | | | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A. Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Park J, Ryu JH, Kim BY, Chun HS, Kim MS, Shin YI. Fermented Lettuce Extract Containing Nitric Oxide Metabolites Attenuates Inflammatory Parameters in Model Mice and in Human Fibroblast-Like Synoviocytes. Nutrients 2023; 15:1106. [PMID: 36904105 PMCID: PMC10005524 DOI: 10.3390/nu15051106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Lettuce (Lactuca sativa L.) contains various bioactive compounds that can reduce the severity of inflammatory diseases. This study aimed to identify therapeutic effects and underlying mechanisms of fermented lettuce extract (FLE) containing stable nitric oxide (NO) on collagen-induced arthritis (CIA) in mice and fibroblast-like synoviocytes (MH7A line) from patients with rheumatoid arthritis (RA). DBA/1 mice were immunized with bovine type II collagen and orally administered FLE for 14 days. On day 36, mouse sera and ankle joints were collected for serological and histological analysis, respectively. Consuming FLE inhibited RA development, suppressing pro-inflammatory cytokine productions, synovial inflammation, and cartilage degradation. The therapeutic effects of FLE in CIA mice were similar to those of methotrexate (MTX), which is typically used to treat RA. In vitro, FLE suppressed the transforming growth factor-β (TGF-β)/Smad signaling pathway in MH7A cells. We also demonstrated that FLE inhibited TGF-β-induced cell migration, suppressed MMP-2/9 expression, inhibited MH7A cell proliferation, and increased the expression of autophagy markers LC3B and p62 in a dose-dependent manner. Our data suggest that FLE could induce autophagosome formations in the early of stages of autophagy while inhibiting their degradation in the later stages. In conclusion, FLE is a potential therapeutic agent for RA.
Collapse
Affiliation(s)
- Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Bo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | | | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Pharmacological evaluation of anti-arthritic potential of terpinen-4-ol using in vitro and in vivo assays. Inflammopharmacology 2022; 30:945-959. [PMID: 35320496 DOI: 10.1007/s10787-022-00960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Terpinen 4-ol, a phytochemical is a monoterpene which has been reported for its anti-inflammatory effect. Present research was planned to check its effect against arthritis through in vitro and in vivo models. Terpinen 4-ol was evaluated through in-vitro procedures including blocking of protein (BSA and egg albumin) denaturation and human RBC membrane stabilization. In in vivo study, terpinen 4-ol (15, 30 and 60 mg/kg) was evaluated using formaldehyde and CFA arthritic models. Terpinen 4-ol significantly inhibited increase in paw and joint swelling as compared to diseased group. Terpinen 4-ol showed remarkable antioxidant effect (SOD, reducing power) and also improved body weight, haematological, histopathological and radiological parameters in CFA model. Also, moreover, the excess production of IL-1β, TNF-α, IRAK, and NF-kB were noticeably attenuated in all terpinen 4-ol treated rats, however, IL-17 and IL-10 were distinctly increased compared to arthritic control rats in RT-PCR. Also, terpinen 4-ol showed promising antioxidant effect in DPPH assay. Henceforth, it might be concluded that terpinen 4-ol has anti-arthritic effect which can be attributed to the downregulation of pro-inflammatory cytokines.
Collapse
|
4
|
de Souza Ferreira Bringel PH, Marques GFO, de Queiroz Martins MG, da Silva MTL, Nobre CAS, do Nascimento KS, Cavada BS, Castro RR, Assreuy AMS. The Lectin Isolated from the Alga Hypnea cervicornis Promotes Antinociception in Rats Subjected to Zymosan-Induced Arthritis: Involvement of cGMP Signalization and Cytokine Expression. Inflammation 2021; 43:1446-1454. [PMID: 32212035 DOI: 10.1007/s10753-020-01222-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of the alga lectin Hypnea cervicornis agglutinin (HCA) on rat zymosan-induced arthritis (ZyA). Zymosan (50-500 μg/25 μL) or sterile saline (Sham) was injected into the tibio-tarsal joint of female Wistar rats (180-200 g). Arthritic animals received morphine (4 mg/kg, intraperitoneal), indomethacin (5 mg/kg, intraperitoneal), or 2% lidocaine (100 μL, subcutaneous). HCA (0.3-3 mg/kg) was administered by intravenous route 30 min before or 2 h after zymosan. 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ, 4 μg, intra-articular) was given 30 min prior HCA. Hypernociception was measured every hour until 6 h, time in which animals were sacrificed for evaluation of leukocytes of the intra articular fluid and gene expression of TNF-α, IL-1, IL-10, and iNOS in the joint tissues using PCR techniques. Hypernociception was responsive to morphine and indomethacin, and its threshold was not altered by lidocaine. The post-treatment of HCA reduced both hypernociception and leukocyte influx. This antinociceptive effect was abolished either by ODQ and glibenclamide. HCA also reduced gene expression of iNOS and TNF-α. In conclusion, the antinociceptive effect of HCA in ZyA involves cyclic GMP signalization and selective modulation of cytokine expression.
Collapse
Affiliation(s)
- Pedro Henrique de Souza Ferreira Bringel
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60714-903, Brazil
| | - Gabriela Fernandes Oliveira Marques
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60714-903, Brazil
| | - Maria Gleiciane de Queiroz Martins
- Laboratório de Moléculas Biologicamente Ativas (BioMol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n; Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Mayara Torquato Lima da Silva
- Laboratório de Moléculas Biologicamente Ativas (BioMol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n; Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Clareane Avelino Simplício Nobre
- Laboratório de Moléculas Biologicamente Ativas (BioMol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n; Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Kyria Santiago do Nascimento
- Laboratório de Moléculas Biologicamente Ativas (BioMol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n; Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas (BioMol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n; Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Rondinelle Ribeiro Castro
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60714-903, Brazil
| | - Ana Maria Sampaio Assreuy
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60714-903, Brazil.
| |
Collapse
|
5
|
Sakr HI, Khowailed AA, Gaber SS, Ahmed OM, Eesa AN. Effect of mandarin peel extract on experimentally induced arthritis in male rats. Arch Physiol Biochem 2021; 127:136-147. [PMID: 31172817 DOI: 10.1080/13813455.2019.1623263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is associated with joint damage. For treatment, non-steroidal anti-inflammatory drugs (NSAIDs), steroidal agents, and immune-suppressants are used. Their side-effects require a safe and effective natural alternative. ANIMALS AND METHODS Thirty-six male albino rats, half kept under observation for 1 week (group I) and others for 2 weeks (group II) were used. Each group was subdivided into: normal (A), RA (B), and oral mandarin-peel extract (MPE) treated (C). Ankle diameter, serum levels of RF, interleukin (IL)-1β, TNFα, IL-4, IL-10, liver homogenates malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and nitric oxide (NO) were measured together with the histopathological examination. RESULTS MPE treatment was associated with increased serum IL-4, IL-10, liver homogenates GSH, and SOD, and decreased ankle diameter, serum RF, IL-1β, TNFα, liver homogenates MDA, NO, inflammatory cell infiltrate, and necrosis. Two weeks' treatment was better. CONCLUSIONS MPE has useful effects in alleviating the disturbed ankle diameter, serum pro- and anti-inflammatory mediators, oxidative stress, and ankle joint histopathology in rheumatic rats.
Collapse
Affiliation(s)
- Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safy S Gaber
- Department of Medical Physiology, Faculty of Medicine, Beni-suef University, Beni-suef, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | - Ahmed N Eesa
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F. Gasotransmitters and the immune system: Mode of action and novel therapeutic targets. Eur J Pharmacol 2018; 834:92-102. [PMID: 30016662 DOI: 10.1016/j.ejphar.2018.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Gasotransmitters are a group of gaseous molecules, with pleiotropic biological functions. These molecules include nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). Abnormal production and metabolism of these molecules have been observed in several pathological conditions. The understanding of the role of gasotransmitters in the immune system has grown significantly in the past years, and independent studies have shed light on the effect of exogenous and endogenous gasotransmitters on immune responses. Moreover, encouraging results come from the efficacy of NO-, CO- and H2S -donors in preclinical animal models of autoimmune, acute and chronic inflammatory diseases. To date, data on the influence of gasotransmitters in immunity and immunopathology are often scattered and partial, and the scarcity of clinical trials using NO-, CO- and H2S -donors, reveals that more effort is warranted. This review focuses on the role of gasotransmitters in the immune system and covers the evidences on the possible use of gasotransmitters for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
8
|
Zhou HF, Yan H, Hu Y, Springer LE, Yang X, Wickline SA, Pan D, Lanza GM, Pham CTN. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS NANO 2014; 8:7305-17. [PMID: 24941020 PMCID: PMC4108210 DOI: 10.1021/nn502372n] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/18/2014] [Indexed: 05/19/2023]
Abstract
Antiangiogenesis has been extensively explored for the treatment of a variety of cancers and certain inflammatory processes. Fumagillin, a mycotoxin produced by Aspergillus fumigatus that binds methionine aminopeptidase 2 (MetAP-2), is a potent antiangiogenic agent. Native fumagillin, however, is poorly soluble and extremely unstable. We have developed a lipase-labile fumagillin prodrug (Fum-PD) that eliminated the photoinstability of the compound. Using αvβ3-integrin-targeted perfluorocarbon nanocarriers to deliver Fum-PD specifically to angiogenic vessels, we effectively suppressed clinical disease in an experimental model of rheumatoid arthritis (RA). The exact mechanism by which Fum-PD-loaded targeted nanoparticles suppressed inflammation in experimental RA, however, remained unexplained. We herein present evidence that Fum-PD nanotherapy indirectly suppresses inflammation in experimental RA through the local production of endothelial nitric oxide (NO). Fum-PD-induced NO activates AMP-activated protein kinase (AMPK), which subsequently modulates macrophage inflammatory response. In vivo, NO-induced AMPK activation inhibits mammalian target of rapamycin (mTOR) activity and enhances autophagic flux, as evidenced by p62 depletion and increased autolysosome formation. Autophagy in turn mediates the degradation of IkappaB kinase (IKK), suppressing the NF-κB p65 signaling pathway and inflammatory cytokine release. Inhibition of NO production by N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, reverses the suppression of NF-κB-mediated inflammatory response induced by Fum-PD nanotherapy. These unexpected results uncover an activity of Fum-PD nanotherapy that may be further explored in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Hui-fang Zhou
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Huimin Yan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Ying Hu
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Luke E. Springer
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Xiaoxia Yang
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Samuel A. Wickline
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Dipanjan Pan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Gregory M. Lanza
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| | - Christine T. N. Pham
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| |
Collapse
|
9
|
Oliynyk I, Hussain R, Amin A, Johannesson M, Roomans GM. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells. Exp Mol Pathol 2013; 94:474-80. [PMID: 23523754 DOI: 10.1016/j.yexmp.2013.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/17/2022]
Abstract
Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that the effect of GSNO on Cl(-) efflux is, at least in part, due to its properties as an NO-donor, and the effect is likely to be mediated by CFTR, not by Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Igor Oliynyk
- School of Health and Medical Sciences, University of Örebro, Örebro University Hospital, Örebro, Sweden
| | | | | | | | | |
Collapse
|
10
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
11
|
Gomaa A, Elshenawy M, Afifi N, Mohammed E, Thabit R. Influence of dipyridamole and its combination with NO donor or NO synthase inhibitor on adjuvant arthritis. Int Immunopharmacol 2010; 10:1406-14. [PMID: 20800711 DOI: 10.1016/j.intimp.2010.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 12/19/2022]
Abstract
The anti-arthritic and anti-inflammatory effects of dipyridamole and the possible involvement of NO in the dipyridamole action are not yet clear. The aim of this study was to evaluate the effects of dipyridamole alone and in combination with either the nitric oxide donor, sodium nitroprusside (SNP) or the non-selective nitric oxide synthase inhibitor, L-NG- monomethyl arginine (L-NMMA), on pathogenesis of adjuvant-induced arthritis model in rats. The results of the present work showed that prophylactic administration of dipyridamole alone and dipyridamole administration in combination with either low dose of SNP or L-NMMA significantly ameliorated pathogenesis of adjuvant arthritis in rats as evidenced by significant decrease in arthritis index, hind paws volume, loss of body weight, hyperalgesia compared with control vehicle (1% DMSO) treated adjuvant arthritic rats. Inflammatory cellular infiltrate in synovium of ankle joint and pannus formation were also markedly inhibited. Interleukin-10(IL-10) levels were significantly increased in these groups of animals. In contrast, a high dose of SNP counteracted the anti-inflammatory and anti-arthritic effects of dipyridamole. The inhibitory effect of therapeutic administration of dipyridamole alone on adjuvant arthritis syndrome was not significantly different from that of vehicle administration. In conclusion, dipyridamole has prophylactic but not therapeutic anti-arthritic and anti-inflammatory effects that appear to be dependent on inhibition of NO synthase. A synergistic combination between dipyridamole and NO synthase inhibitor or low dose of NO donor may have prophylactic and therapeutic values in autoimmune diseases like RA.
Collapse
Affiliation(s)
- Adel Gomaa
- Department of Pharmacology & Toxicology, College of Pharmacy, Taibah University, Al-madinah Almunawwarah, KSA.
| | | | | | | | | |
Collapse
|
12
|
Gomaa A, Elshenawy M, Afifi N, Mohammed E, Thabit R. Enhancement of the anti-inflammatory and anti-arthritic effects of theophylline by a low dose of a nitric oxide donor or non-specific nitric oxide synthase inhibitor. Br J Pharmacol 2010; 158:1835-47. [PMID: 19888960 DOI: 10.1111/j.1476-5381.2009.00468.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Although there are many new specific phosphodiesterase inhibitors with anti-inflammatory activity, none have yet reached the market because of their low therapeutic efficacy. Our study was aimed to evaluate the anti-inflammatory and anti-arthritic effect of an established phosphodiesterase inhibitor, theophylline, and to investigate the effect of the nitric oxide (NO) donor, sodium nitroprusside (SNP) or NO synthase inhibitor, L-N(G)-monomethyl arginine (L-NMMA) on its actions. EXPERIMENTAL APPROACH The effects of theophylline alone and combined with SNP or L-NMMA on the pathogenesis of adjuvant-induced arthritis in rats were evaluated. KEY RESULTS Prophylactic or therapeutic doses of theophylline significantly ameliorated the pathogenesis of adjuvant arthritis in rats as evidenced by a significant decrease in the arthritis index, hind paws volume, ankle joint diameter, fever, body weight loss and hyperalgesia in a dose-dependent manner. Inflammatory cellular infiltrate in synovium of ankle joint and pannus formation were also markedly inhibited. Interleukin-10 (IL-10) levels were significantly increased in arthritic rats given theophylline alone or in combination with either SNP or L-NMMA. Co-administration of a low dose of SNP or L-NMMA enhanced significantly the anti-inflammatory and anti-arthritic effect of theophylline. In contrast, a high dose of SNP counteracted the anti-inflammatory and anti-arthritic effects of theophylline. CONCLUSIONS AND IMPLICATION These findings confirm the anti-inflammatory and anti-arthritic activities of theophylline and suggest a new approach to enhance the anti-inflammatory and anti-arthritic effects of theophylline would be to administer it in combination with a low dose of a NO donor or a non-specific NO synthase inhibitor.
Collapse
Affiliation(s)
- Adel Gomaa
- Department of Pharmacology, Faculty of Pharmacy, Taibah University, Al-madinah Almunawwarah, KSA.
| | | | | | | | | |
Collapse
|