1
|
Li D, Li W, Zheng P, Yang Y, Liu Q, Hu Y, He J, Long Q, Ma Y. A "trained immunity" inducer-adjuvanted nanovaccine reverses the growth of established tumors in mice. J Nanobiotechnology 2023; 21:74. [PMID: 36864424 PMCID: PMC9980871 DOI: 10.1186/s12951-023-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, β-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1β, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of β-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.
Collapse
Affiliation(s)
- Duo Li
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.508395.20000 0004 9404 8936Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Weiran Li
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Peng Zheng
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Ying Yang
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Qingwen Liu
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.285847.40000 0000 9588 0960Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Yongmao Hu
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.440773.30000 0000 9342 2456School of Life Sciences, Yunnan University, Kunming, China
| | - Jinrong He
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Qiong Long
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
2
|
Guo H, Wu H, Sajid A, Li Z. Whole grain cereals: the potential roles of functional components in human health. Crit Rev Food Sci Nutr 2021; 62:8388-8402. [PMID: 34014123 DOI: 10.1080/10408398.2021.1928596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole grain cereals have been the basis of human diet since ancient times. Due to rich in a variety of unique bioactive ingredients, they play an important role in human health. This review highlights the contents and distribution of primary functional components and their health effects in commonly consumed whole grain cereals, especially dietary fiber, protein, polyphenols, and alkaloids. In general, cereals exert positive effects in the following ways: 1) Restoring intestinal flora diversity and increasing intestinal short-chain fatty acids. 2) Regulating plasma glucose and lipid metabolism, thereby the improvement of obesity, cardiovascular and cerebrovascular diseases, diabetes, and other chronic metabolic diseases. 3) Exhibiting antioxidant activity by scavenging free radicals. 4) Preventing gastrointestinal cancer via the regulation of classical signaling pathways. In summary, this review provides a scientific basis for the formulation of whole-grain cereals-related dietary guidelines, and guides people to form scientific dietary habits, so as to promote the development and utilization of whole-grain cereals.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan, PR China
| | - Amin Sajid
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China;,College of Life Science, Shanxi University, Taiyuan, PR China
| |
Collapse
|
3
|
Zhu F, Tong Y, Wu Y, Dong N, Sheng Z, Yao Y. Immunomodulatory property and its regulatory mechanism of double network hydrogel on dendritic cells. J Biomed Mater Res A 2020; 109:1015-1026. [PMID: 32856407 DOI: 10.1002/jbm.a.37091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 11/06/2022]
Abstract
Modulation of the key immune cell subsets by biomaterial has emerged as a potential target to promote tissue repair and regeneration. Based on calcium alginate (Alg) and glycol chitosan (GC), an injectable double-network (DN) hydrogel has been developed as a scaffold for cell delivery and cell cocultured system. Previous studies have documented the interaction between dendritic cells (DCs) and GC or Alg hydrogel, but the potential effect of DN hydrogel on activation of DCs still remains unclear. This research was conducted to explore the immunomodulatory influence and underlying mechanisms of GC/Alg DN hydrogel on DCs in vitro and in vivo. Stimulation of DCs with DN hydrogel obviously induced the maturation of DCs in vitro. In vivo, DN hydrogel did not have obvious influence on the maturation of splenic DCs on postimplantation days 3, 10, and 30. Mechanistically, we found that DN hydrogel induced the maturation of DCs via phosphorylation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin in vitro. It provides a novel understanding of the immunomodulatory property of DN hydrogel on DCs, which may serve as potential target for designing immune-mediated regenerative strategies.
Collapse
Affiliation(s)
- Fujun Zhu
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of Chinese PLA General Hospital, Beijing, China.,Department of Burns, Plastic, and Wound Repair Surgery, The 924th Hospital of the Joint Logistic Support Force of Chinese PLA, Guilin, China
| | - Yalin Tong
- Department of Burns, Plastic, and Wound Repair Surgery, The 924th Hospital of the Joint Logistic Support Force of Chinese PLA, Guilin, China
| | - Yao Wu
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of Chinese PLA General Hospital, Beijing, China
| | - Ning Dong
- Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Sheng
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of Chinese PLA General Hospital, Beijing, China
| | - Yongming Yao
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Rui K, Tian J, Tang X, Ma J, Xu P, Tian X, Wang Y, Xu H, Lu L, Wang S. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunol Res 2016; 64:931-9. [DOI: 10.1007/s12026-016-8789-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Affiliation(s)
- Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food; Division of Food Science; Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences; 10 Tuwima Str. Olsztyn 10-748 Poland
| |
Collapse
|
6
|
Ghavami L, Goliaei B, Taghizadeh B, Nikoofar A. Effects of barley β-glucan on radiation damage in the human hepatoma cell line HepG2. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 775-776:1-6. [DOI: 10.1016/j.mrgentox.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 07/30/2014] [Accepted: 09/09/2014] [Indexed: 01/22/2023]
|
7
|
Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BIOMED RESEARCH INTERNATIONAL 2013; 2013:982317. [PMID: 23586068 PMCID: PMC3613060 DOI: 10.1155/2013/982317] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/25/2013] [Indexed: 12/31/2022]
Abstract
Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail.
Collapse
|