1
|
Mizuguchi H, Ito T, Nishida K, Wakugawa T, Nakano T, Tanabe A, Watano T, Kitamura N, Kaminuma O, Kimura K, Ishida T, Matsunaga A, Ohta K, Shimono R, Kutsuna H, Yasuda T, Yabumoto M, Kitamura Y, Takeda N, Fukui H. Structure-activity relationship studies of pyrogallol as a calcineurin/NFAT signaling suppressor. J Pharmacol Sci 2024; 155:140-147. [PMID: 38880548 DOI: 10.1016/j.jphs.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Previously, we have shown that pyrogallol alleviated nasal symptoms and suppressed IL-9 gene up-regulation in allergy model rats by inhibiting calcineurin/NFAT signaling. As pyrogallol has antioxidative activity, it may be responsible for inhibiting calcineurin/NFAT signaling-mediated IL-9 gene expression. However, the relationship between antioxidative activity and suppression of IL-9 gene expression has not been elucidated yet. Here, we conducted the structure-activity relationship studies of pyrogallol and its structurally related compounds to understand the mechanism of IL-9 gene suppression by pyrogallol. 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay showed that the antioxidative activity of catechol, resorcinol, phloroglucinol, and gallic acid is 60.1%, 10.4%, 18.8%, and 113.5% of pyrogallol, respectively. Catechol, resorcinol, and phloroglucinol did not suppress NFAT dephosphorylation. Gallic acid suppressed dephosphorylation of NFAT. Gallic acid also suppressed ionomycin-induced up-regulation of IL-9 gene expression with the IC50 value of 82.6 μM. However, catechol, resorcinol and phloroglucinol showed no suppressive activity. In addition, using gallic acid-immobilized beads, we isolated and identified Poly(U)-binding-splicing factor 60 (PUF60) as a pyrogallol binding protein. These results suggest that the antioxidative activity of pyrogallol is not likely to be the mechanism of IL-9 gene suppression. Data also suggest that PUF60 is one of its target molecules responsible for the suppression of calcineurin/NFAT signaling by pyrogallol.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan.
| | - Tomohira Ito
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Kohei Nishida
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Tomoharu Wakugawa
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Tomohiro Nakano
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Akie Tanabe
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Tomokazu Watano
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Osamu Kaminuma
- Department of Disease Model Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Katsunori Kimura
- Food Microbiology and Function Research Laboratories, R & D Division. Meiji Co., Ltd., Tokyo, 192-0919, Japan
| | - Tatsuya Ishida
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, 115-8650, Japan
| | | | - Kazumi Ohta
- Ohta Child Allergy Clinic, Kyoto, 607-8152, Japan
| | | | - Haruo Kutsuna
- Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| | - Taiei Yasuda
- Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| | | | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Hiroyuki Fukui
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan; Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| |
Collapse
|
2
|
Baniya MK, Kim EH, Chun KS. Terfenadine, a histamine H1 receptor antagonist, induces apoptosis by suppressing STAT3 signaling in human colorectal cancer HCT116 cells. Front Pharmacol 2024; 15:1418266. [PMID: 38939837 PMCID: PMC11208689 DOI: 10.3389/fphar.2024.1418266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Colorectal cancer is a highly aggressive and metastatic cancer with inadequate clinical outcomes. Given the crucial role of histamine and histamine receptors in colorectal carcinogenesis, this study aimed at exploring the anticancer effects of terfenadine against colorectal cancer HCT116 cells and elucidate its underlying mechanism. Methods Herein, we examined the effect of terfenadine on growth and proliferation of HCT116 cells in vitro and in vivo. Various experimental techniques such as flow cytometry, western blot, immunoprecipitation, luciferase assay were employed to unveil the mechanism of cell death triggered by terfenadine. Results Terfenadine markedly attenuated the viability of HCT116 cells by abrogating histamine H1 receptor (H1R) signaling. In addition, terfenadine modulated the balance of Bax and Bcl-2, triggering cytochrome c discharge in the cytoplasm, thereby stimulating the caspase cascade and poly-(ADP-ribose) polymerase (PARP) degradation. Moreover, terfenadine suppressed murine double minute-2 (Mdm2) expression, whereas p53 expression increased. Terfenadine suppressed STAT3 phosphorylation and expression of its gene products by inhibiting MEK/ERK and JAK2 activation in HCT116 cells. Furthermore, treatment with U0126, a MEK inhibitor, and AG490, a JAK2 inhibitor, dramatically diminished the phosphorylations of ERK1/2 and JAK2, respectively, leading to STAT3 downregulation. Likewise, terfenadine diminished the complex formation of MEK1/2 with β-arrestin 2. In addition, terfenadine dwindled the phosphorylation of PKC substrates. Terfenadine administration (10 mg/kg) substantially retarded the growth of HCT116 tumor xenografts in vivo. Conclusion Terfenadine induces the apoptosis of HCT116 cells by abrogating STAT3 signaling. Overall, this study supports terfenadine as a prominent anticancer therapy for colorectal cancer.
Collapse
Affiliation(s)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Wu T, Li Z, Wu Y, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Zhao Y. Exploring plant polyphenols as anti-allergic functional products to manage the growing incidence of food allergy. Front Nutr 2023; 10:1102225. [PMID: 37360292 PMCID: PMC10290203 DOI: 10.3389/fnut.2023.1102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
The active substances derived from plants have received increasing attention owing to their wide range of pharmacological applications, including anti-tumor, anti-allergic, anti-viral, and anti-oxidative activities. The allergy epidemic is a growing global public health problem that threatens human health and safety. Polyphenols from plants have significant anti-allergic effects and are an important source of anti-allergic drug research and development. Here, we describe recent advances in the anti-allergic efficacy of plant polyphenols, including their comprehensive effects on cellular or animal models. The current issues and directions for future development in this field are discussed to provide a theoretical basis for the development and utilization of these active substances as anti-allergic products.
Collapse
Affiliation(s)
- Tianxiang Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenxing Li
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
5
|
Shaha A, Islam R, Tanaka N, Kashiwada Y, Fukui H, Takeda N, Kitamura Y, Mizuguchi H. Betuletol, a Propolis Component, Suppresses IL-33 Gene Expression and Effective against Eosinophilia. Molecules 2022; 27:molecules27175459. [PMID: 36080225 PMCID: PMC9457836 DOI: 10.3390/molecules27175459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees, has been used in folk medicine since ancient times due to its many biological benefits such as antitumor, antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory effects. Propolis contains flavonoids, terpenoids, aromatic aldehydes, and alcohols, which vary with different climate and environmental conditions. In our study, we examined the antiallergic activity of Brazilian green propolis (BGP) and isolated the active compound that can suppress an allergy-sensitive gene, IL-33, expression and eosinophilia. Ethanolic extract of BGP freeze-dried powder was fractionated with several solvent systems, and the active fractions were collected based on activity measurement. The single active compound was found by thin-layer chromatography. Using column chromatography and NMR, the active compound was isolated and identified as 3,5,7-trihydroxy-6,4’-dimethoxyflavone, also known as betuletol. Further, the antiallergic activity of that has been examined in PMA-induced up-regulation of IL-33 gene expression in Swiss 3T3 cells. Our data showed the IL-33 gene suppression both by BGP and the isolated active compound, betuletol. We also found that betuletol suppressed ERK phosphorylation, suggesting it could be effective in suppressing IL-33 mediated eosinophilic chronic inflammation and will provide new insights to develop potent therapeutics against allergic inflammations.
Collapse
Affiliation(s)
- Aurpita Shaha
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Laboratory of Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Rezwanul Islam
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Naonobu Tanaka
- Department of Parmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yoshiki Kashiwada
- Department of Parmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
- Medical Corporation Kinshukai, Osaka 558-0011, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
- Correspondence: ; Tel.: +81-721-24-9462
| |
Collapse
|
6
|
Signaling Pathway of Histamine H 1 Receptor-Mediated Histamine H 1 Receptor Gene Upregulation Induced by Histamine in U-373 MG Cells. Curr Issues Mol Biol 2021; 43:1243-1254. [PMID: 34698097 PMCID: PMC8929123 DOI: 10.3390/cimb43030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression in U-373 MG cells. However, the molecular signaling of this upregulation is still unclear. Here, we investigated the molecular mechanism of histamine-induced H1R gene upregulation in U-373 MG cells. Histamine-induced H1R gene upregulation was inhibited by H1R antagonist d-chlorpheniramine, but not by ranitidine, ciproxifan, or JNJ77777120, and H2R, H3R, or H4R antagonists, respectively. Ro-31-8220 and Go6976 also suppressed this upregulation, however, the PKCδ selective inhibitor rottlerin and the PKCβ selective inhibitor Ly333531 did not. Time-course studies showed distinct kinetics of H1R gene upregulation in U-373 MG cells from that in HeLa cells. A promoter assay revealed that the promoter region responsible for H1R gene upregulation in U-373 MG cells was different from that of HeLa cells. These data suggest that the H1R-activated H1R gene expression signaling pathway in U-373 MG cells is different from that in HeLa cells, possibly by using different promoters. The involvement of PKCα also suggests that compounds that target PKCδ could work as peripheral type H1R-selective inhibitors without a sedative effect.
Collapse
|
7
|
Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N. Pharmacological Benefits of Triphala: A Perspective for Allergic Rhinitis. Front Pharmacol 2021; 12:628198. [PMID: 33995026 PMCID: PMC8120106 DOI: 10.3389/fphar.2021.628198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as “Triphala,” which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai, University, Chiang Mai, Thailand
| | - Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthiya Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Moon SJ, Lee CH, Lee DY. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing data support that herbal medicines are beneficial in the treatment of cervical cancer; however, their mechanisms of action remain to be elucidated. In the current study, we used a systems pharmacology approach to explore the pharmacological mechanisms of FDY003, an anticancer herbal formula comprising Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris (Linn.) Link, in the treatment of cervical cancer. Through the pharmacokinetic assessment of absorption-distribution-metabolism-excretion characteristics, we found 18 active compounds that might interact with 106 cervical cancer-related targets responsible for the pharmacological effects. FDY003 targets were significantly associated with gene ontology terms related to the regulation of cellular behaviors, including cell proliferation, cell cycle processes, cell migration, cell apoptosis, cell death, and angiogenesis. The therapeutic targets of the herbal drug were further enriched in various oncogenic pathways that are implicated in the tumorigenesis and progression of cervical cancer, including the phosphatidylinositol 3-kinase, mitogen-activated protein kinase, focal adhesion, human papillomavirus infection, and tumor necrosis factor signaling pathways. Our study provides a systematic approach to explore the anticancer properties of herbal medicines against cervical cancer.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | | | - Chol Hee Lee
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
9
|
Nakano T, Ikeda M, Wakugawa T, Kashiwada Y, Kaminuma O, Kitamura N, Yabumoto M, Fujino H, Kitamura Y, Fukui H, Takeda N, Mizuguchi H. Identification of pyrogallol from Awa-tea as an anti-allergic compound that suppresses nasal symptoms and IL-9 gene expression. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:289-297. [PMID: 33148904 DOI: 10.2152/jmi.67.289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
As the expression level of allergic disease sensitive genes are correlated with the severity of allergic symptoms, suppression of these gene expressions could be promising therapeutics. We demonstrated that protein kinase Cδ / heat shock protein 90-mediated H1R gene expression signaling and nuclear factor of activated T-cells (NFAT)-mediated IL-9 gene expression signaling are responsible for the pathogenesis of pollinosis. Treatment with Awa-tea combined with wild grape hot water extract suppressed these signaling and alleviated nasal symptoms in toluene-2,4-diisocyanate (TDI)-sensitized rats. However, the underlying mechanism of its anti-allergic activity is not elucidated yet. Here, we sought to identify an anti-allergic compound from Awa-tea and pyrogallol was identified as an active compound. Pyrogallol strongly suppressed ionomycin-induced up-regulation of IL-9 gene expression in RBL-2H3 cells. Treatment with pyrogallol in combination with epinastine alleviated nasal symptoms and suppressed up-regulation of IL-9 gene expression in TDI-sensitized rats. Pyrogallol itself did not inhibit calcineurin phosphatase activity. However, pyrogallol suppressed ionomycin-induced dephosphorylation and nuclear translocation of NFAT. These data suggest pyrogallol is an anti-allergic compound in Awa-tea and it suppressed NFAT-mediated IL-9 gene expression through the inhibition of dephosphorylation of NFAT. This might be the underlying mechanism of the therapeutic effects of combined therapy of pyrogallol with antihistamine. J. Med. Invest. 67 : 289-297, August, 2020.
Collapse
Affiliation(s)
- Tomohiro Nakano
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Mitsuhiro Ikeda
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Tomoharu Wakugawa
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yoshiki Kashiwada
- Department of Pharmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Osamu Kaminuma
- Department of Disease Model Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Hiromichi Fujino
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolalyngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Medical Corporation Kinshukai, Osaka 558-0011, Japan.,Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Noriaki Takeda
- Department of Otolalyngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
10
|
Barbosa-Méndez S, Salazar-Juarez A. Melatonin does not produce sedation in rats: A chronobiological study. Chronobiol Int 2019; 37:353-374. [DOI: 10.1080/07420528.2019.1702554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Barbosa-Méndez
- Molecular Neurobiology and Neurochemistry of Addiction, Ramón de la Fuente Muñiz National Institute of Psychiatry, Ciudad de México, México
| | - Alberto Salazar-Juarez
- Molecular Neurobiology and Neurochemistry of Addiction, Ramón de la Fuente Muñiz National Institute of Psychiatry, Ciudad de México, México
| |
Collapse
|
11
|
Islam R, Mizuguchi H, Shaha A, Nishida K, Yabumoto M, Ikeda H, Fujino H, Kitamura Y, Fukui H, Takeda N. Effect of wild grape on the signaling of histamine H 1 receptor gene expression responsible for the pathogenesis of allergic rhinitis. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 65:242-250. [PMID: 30282868 DOI: 10.2152/jmi.65.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
As expression level of allergic disease-sensitive genes are correlated with allergic symptom severity, suppression of these gene expressions could be good therapeutics. We have demonstrated that PKCδ signaling and NFAT signaling, involve in histamine H1 receptor (H1R) and IL-9 gene expressions, respectively, are responsible for the pathogenesis of allergic rhinitis. We explore anti-allergic compounds that suppress these signaling pathways and found that wild grape (WG) contains such compounds. Here, we investigated the effect of WG hot water extract (WGE) on the signaling pathways for PKCδ-mediated H1R and NFAT-mediated IL-9 gene expressions. WGE suppressed histamine/PMA-induced H1R gene up-regulation in HeLa cells. Toluene-2,4-diisocyanate (TDI)-induced H1R mRNA elevation in TDI-sensitized rats was also suppressed by WGE treatment. Treatment with WGE in combination with Awa-tea, suppresses NFAT signaling-mediated IL-9 gene, markedly alleviated nasal symptoms. Furthermore, WGE suppressed PMA-induced IL-33 gene up-regulation in Swiss 3T3 cells. Data suggest that combination of WGE, suppresses PKCδ signaling with Awa-tea, suppresses NFAT signaling would have distinct clinical and therapeutic advantages as a substitute for anti-allergic drugs. In addition, as the expression level of IL-33 mRNA was correlated with the blood eosinophils number in patients with pollinosis, WG could alleviate eosinophilic inflammation through the suppression of IL-33 gene expression. J. Med. Invest. 65:242-250, August, 2018.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Aurpita Shaha
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kohei Nishida
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | | | - Hiromichi Fujino
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
12
|
Shaha A, Mizuguchi H, Kitamura Y, Fujino H, Yabumoto M, Takeda N, Fukui H. Effect of Royal Jelly and Brazilian Green Propolis on the Signaling for Histamine H 1 Receptor and Interleukin-9 Gene Expressions Responsible for the Pathogenesis of the Allergic Rhinitis. Biol Pharm Bull 2018; 41:1440-1447. [PMID: 30175778 DOI: 10.1248/bpb.b18-00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The significant correlation between nasal symptom scores and level of histamine H1 receptor (H1R) mRNA in nasal mucosa was observed in patients with pollinosis, suggesting that H1R gene is an allergic disease sensitive gene. We demonstrated that H1R and interleukin (IL)-9 gene are the allergic rhinitis (AR)-sensitive genes and protein kinase Cδ (PKCδ) signaling and nuclear factor of activated T-cells (NFAT) signaling are involved in their expressions, respectively. Honey bee products have been used to treat allergic diseases. However, their pathological mechanism remains to be elucidated. In the present study, we investigated the mechanism of the anti-allergic effect of royal jelly (RJ) and Brazilian green propolis (BGPP). Treatment with RJ and BGPP decreased in the number of sneezing on toluene 2,4-diissocyanate (TDI)-stimulated rats. The remarkable suppression of H1R mRNA in nasal mucosa was observed. RJ and BGPP also suppressed the expression of IL-9 gene. RJ and BGPP suppressed phorbol-12-myristate-13-acetate-induced Tyr311 phosphorylation of PKCδ in HeLa cells. In RBL-2H3 cells, RJ and BGPP also suppressed NFAT-mediated IL-9 gene expression. These results suggest that RJ and BGPP improve allergic symptoms by suppressing PKCδ and NFAT signaling pathways, two important signal pathways for the AR pathogenesis, and suggest that RJ and BGPP could be good therapeutics against AR.
Collapse
Affiliation(s)
- Aurpita Shaha
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiromichi Fujino
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
13
|
Edo Y, Otaki A, Asano K. Quercetin Enhances the Thioredoxin Production of Nasal Epithelial Cells In Vitro and In Vivo. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E124. [PMID: 30469393 PMCID: PMC6313642 DOI: 10.3390/medicines5040124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 04/15/2023]
Abstract
Background: Thioredoxin (TRX) acts as both a scavenger of reactive oxygen species (ROS) and an immuno-modulator. Although quercetin has been shown to favorably modify allergic rhinitis (AR) symptoms, its influence on TRX production is not well defined. The present study was designed to examine whether quercetin could favorably modify AR symptoms via the TRX production of nasal epithelial cells in vitro and in vivo. Methods: Human nasal epithelial cells (HNEpCs) were stimulated with H2O2 in the presence of quercetin. TRX levels in 24-h culture supernatants were examined with ELISA. BALB/c male mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA every other day, beginning seven days after the final sensitization. The mice were orally administered quercetin once a day for five consecutive days, beginning seven days after the final sensitization. Nasal symptoms were assessed by counting the number of sneezes and nasal rubbing behaviors during a 10-min period immediately after the challenge. TRX levels in nasal lavage fluids obtained 6 h after the challenge were examined by ELISA. Results: Treatment with 1.0 nM quercetin increased H2O2-induced TRX levels. The oral administration of 20.0 mg/kg of quercetin significantly inhibited nasal symptoms after the challenge. The same dose of quercetin significantly increased TRX levels in nasal lavage fluids. Conclusions: Quercetin's ability to increase TRX production may account, at least in part, for its clinical efficacy toward AR.
Collapse
Affiliation(s)
- Yukako Edo
- Graduate School of Health Sciences, Showa University Graduate School, Yokohama 226-8555, Japan.
| | - Amane Otaki
- Division of Nursing, Showa University School of Nursing and Rehabilitation Sciences, Yokohama 226-8555, Japan.
| | - Kazuhito Asano
- Division of Physiology, Showa University School of Nursing and Rehabilitation Sciences, Yokohama 226-8555, Japan.
| |
Collapse
|
14
|
Fujii T, Kitamura Y, Mizuguchi H, Okamoto K, Sanada N, Yamada T, Sugiyama M, Michinaga S, Kitayama M, Fukui H, Takeda N. Effects of irradiation with narrowband-ultraviolet B on up-regulation of histamine H 1 receptor mRNA and induction of apoptosis in HeLa cells and nasal mucosa of rats. J Pharmacol Sci 2018; 138:54-62. [PMID: 30301597 DOI: 10.1016/j.jphs.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/01/2023] Open
Abstract
Narrowband-ultraviolet B (NB-UVB) phototherapy is used for the treatment of atopic dermatitis. Previously, we reported that irradiation with 200 mJ/cm2 of 310 nm NB-UVB suppressed phorbol-12-myristate-13-acetate (PMA)-induced up-regulation of histamine H1 receptor (H1R) gene expression without induction of apoptosis in HeLa cells. However, the effect of NB-UVB irradiation on nasal symptoms is still unclear. Here, we show that low dose irradiation with 310 nm NB-UVB alleviates nasal symptoms in toluene 2,4-diisocyanate (TDI)-sensitized allergy model rats. Irradiation with 310 nm NB-UVB suppressed PMA-induced H1R mRNA up-regulation in HeLa cells dose-dependently at doses of 75-200 mJ/cm2 and reversibly at a dose of 150 mJ/cm2 without induction of apoptosis. While, at doses of more than 200 mJ/cm2, irradiation with 310 nm NB-UVB induced apoptosis. Western blot analysis showed that the suppressive effect of NB-UVB irradiation on H1R gene expression was through the inhibition of ERK phosphorylation. In TDI-sensitized rat, intranasal irradiation with 310 nm NB-UVB at an estimated dose of 100 mJ/cm2 once a day for three days suppressed TDI-induced sneezes and up-regulation of H1R mRNA in nasal mucosa without induction of apoptosis. These findings suggest that repeated intranasal irradiation with low dose of NB-UVB could be clinically used as phototherapy of AR.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Kentaro Okamoto
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Nanae Sanada
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takuya Yamada
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan; Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Manabu Sugiyama
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Mika Kitayama
- Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
15
|
Yamamoto K, Mizuguchi H, Tokashiki N, Kobayashi M, Tamaki M, Sato Y, Fukui H, Yamauchi A. Protein kinase C-δ signaling regulates glucagon secretion from pancreatic islets. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 64:122-128. [PMID: 28373608 DOI: 10.2152/jmi.64.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accumulating evidence supports the "glucagonocentric hypothesis", in which antecedent α-cell failure and inhibition of glucagon secretion are responsible for diabetes progression. Protein kinase C (PKC) is involved in glucagon secretion from α-cells, although which PKC isozyme is involved and the mechanism underlying this PKC-regulated glucagon secretion remains unknown. Here, the involvement of PKCδ in the onset and progression of diabetes was elucidated. Immunofluorescence studies revealed that PKCδ was expressed and activated in α-cells of STZ-induced diabetic model mice. Phorbol 12-myristate 13-acetate (PMA) stimulation significantly augmented glucagon secretion from isolated islets. Pre-treatment with quercetin and rottlerin, PKCδ signaling inhibitors, significantly suppressed the PMA-induced elevation of glucagon secretion. While Go6976, a Ca2+-dependent PKC selective inhibitor did not suppress glucagon secretion. Quercetin suppressed PMA-induced phosphorylation of Tyr311 of PKCδ in isolated islets. However, quercetin itself had no effect on either glucagon secretion or glucagon mRNA expression. Our data suggest that PKCδ signaling inhibitors suppressed glucagon secretion. Elucidation of detailed signaling pathways causing PKCδ activation in the onset and progression of diabetes followed by the augmentation of glucagon secretion could lead to the identification of novel therapeutic target molecules and the development of novel therapeutic drugs for diabetes. J. Med. Invest. 64: 122-128, February, 2017.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fukui H, Mizuguchi H, Nemoto H, Kitamura Y, Kashiwada Y, Takeda N. Histamine H 1 Receptor Gene Expression and Drug Action of Antihistamines. Handb Exp Pharmacol 2017; 241:161-169. [PMID: 27885525 DOI: 10.1007/164_2016_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The upregulation mechanism of histamine H1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H1 receptor-mediated activation of histamine H1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H1 receptor gene expression, suggesting the advantage of therapeutic effect.
Collapse
Affiliation(s)
- Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Fujii Memorial Institute of Medical Science, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan.
| | - Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Hisao Nemoto
- Department of Pharmaceutical Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology and Communicative Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yoshiki Kashiwada
- Department of Pharmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Noriaki Takeda
- Department of Otolaryngology and Communicative Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
17
|
Hawthorn Leaf Flavonoids Protect against Diabetes-Induced Cardiomyopathy in Rats via PKC- α Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2071952. [PMID: 29234372 PMCID: PMC5646339 DOI: 10.1155/2017/2071952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Objectives DCM has become one of the main reasons of death in diabetic patients. In this study, we aimed to explore the hawthorn leaf flavonoids (HLF) protective effect against diabetes-induced cardiac injury and the underlying mechanisms in experimental rats. Methods Experimental diabetic model was induced by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) in rats after feeding with high-fat diet for 8 weeks. The diabetic rats received a 16-week treatment of different doses of HLF (50, 100, and 200). The morphological changes of myocardial cells were observed by light microscope; the concentration of antioxidant indicator and TNF-α and the expression of PKC-α mRNA, PKC-α, and NF-κB proteins were assessed as well. Results STZ-induced diabetes mellitus prompted blood glucose, cardiac injury, oxidative stress, and inflammation, accompanied with suppressed body weight. On the contrary, HLF administration improved body weight and blood glucose and attenuated myocardial structural abnormalities in diabetic rats. In addition, HLF decreased MDA level and enhanced SOD activities, inhibited TNF-α expression, and downregulated PKC-α mRNA, PKC-α, and NF-κB which were induced by diabetes. Conclusions HLF has a protective effect against diabetic cardiomyopathy in rats. The mechanism may be involved in reducing oxidative stress and inflammation via inactivation of the PKC-α signaling pathway.
Collapse
|
18
|
Chung RTM. Detoxification effects of phytonutrients against environmental toxicants and sharing of clinical experience on practical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8946-8956. [PMID: 26310706 DOI: 10.1007/s11356-015-5263-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
According to the Food and Health Bureau and Trade and Industry Department of the Hong Kong Government, 90 % of the total food supply in Hong Kong was imported from the Mainland China. In addition, the hidden or illegal use of prohibited pesticides, food adulteration (e.g., using industrial salt in food processing, using gutter oil as cooking oil), and pollutions were periodically reported by the media. Excessive exposure to toxic heavy metals or persistent organic pollutants (POPs) from diet or environmental is inevitable amid industrialization and pollution. Understanding of the detoxification ability among nutrients in plant-based food (i.e., phytonutrients in green tea, onion, garlic, coriander, and turmeric) offers therapeutic and preventive effects against the poisoning effects due to these pollutants. Oxidative stress and pro-inflammatory actions are the common mechanisms for heavy metals or POPs toxicities, while phytonutrients counteracts these cellular insults by anti-oxidation, upregulation of anti-inflammatory pathways, and chelation.
Collapse
|
19
|
Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2016; 130:212-8. [PMID: 26980430 DOI: 10.1016/j.jphs.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R) or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC) mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI)-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription.
Collapse
|
20
|
Mizuguchi H, Orimoto N, Kadota T, Kominami T, Das AK, Sawada A, Tamada M, Miyagi K, Adachi T, Matsumoto M, Kosaka T, Kitamura Y, Takeda N, Fukui H. Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2016; 130:151-8. [PMID: 26874672 DOI: 10.1016/j.jphs.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022] Open
Abstract
Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan.
| | - Naoki Orimoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan; Taiho Pharmaceutical Co. LTD., 224-2, Ebisuno Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takuya Kadota
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Takahiro Kominami
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Asish K Das
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Akiho Sawada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Misaki Tamada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Kohei Miyagi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tsubasa Adachi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Mayumi Matsumoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tomoya Kosaka
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
21
|
Shill MC, Mizuguchi H, Karmakar S, Kadota T, Mukherjee PK, Kitamura Y, Kashiwada Y, Nemoto H, Takeda N, Fukui H. A novel benzofuran, 4-methoxybenzofuran-5-carboxamide, from Tephrosia purpurea suppressed histamine H 1 receptor gene expression through a protein kinase C-δ-dependent signaling pathway. Int Immunopharmacol 2016; 30:18-26. [DOI: 10.1016/j.intimp.2015.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
|
22
|
Nariai Y, Mizuguchi H, Ogasawara T, Nagai H, Sasaki Y, Okamoto Y, Yoshimura Y, Kitamura Y, Nemoto H, Takeda N, Fukui H. Disruption of Heat Shock Protein 90 (Hsp90)-Protein Kinase Cδ (PKCδ) Interaction by (-)-Maackiain Suppresses Histamine H1 Receptor Gene Transcription in HeLa Cells. J Biol Chem 2015; 290:27393-27402. [PMID: 26391399 PMCID: PMC4646370 DOI: 10.1074/jbc.m115.657023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The histamine H1 receptor (H1R) gene is an allergic disease sensitive gene, and its expression level is strongly correlated with the severity of allergic symptoms. (-)-Maackiain was identified as a Kujin-derived anti-allergic compound that suppresses the up-regulation of the H1R gene. However, the underlying mechanism of H1R gene suppression remains unknown. Here, we sought to identify a target protein of (-)-maackiain and investigate its mechanism of action. A fluorescence quenching assay and immunoblot analysis identified heat shock protein 90 (Hsp90) as a target protein of (-)-maackiain. A pull-down assay revealed that (-)-maackiain disrupted the interaction of Hsp90 with PKCδ, resulting in the suppression of phorbol 12-myristate 13-acetate (PMA)-induced up-regulation of H1R gene expression in HeLa cells. Additional Hsp90 inhibitors, including 17-(allylamino)-17-demethoxygeldanamycin, celastrol, and novobiocin also suppressed PMA-induced H1R gene up-regulation. 17-(Allylamino)-17-demethoxygeldanamycin inhibited PKCδ translocation to the Golgi and phosphorylation of Tyr(311) on PKCδ. These data suggest that (-)-maackiain is a novel Hsp90 pathway inhibitor. The underlying mechanism of the suppression of PMA-induced up-regulation of H1R gene expression by (-)-maackiain and Hsp90 inhibitors is the inhibition of PKCδ activation through the disruption of Hsp90-PKCδ interaction. Involvement of Hsp90 in H1R gene up-regulation suggests that suppression of the Hsp90 pathway could be a novel therapeutic strategy for allergic rhinitis.
Collapse
Affiliation(s)
- Yuki Nariai
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Hiroyuki Mizuguchi
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan.
| | - Takeyasu Ogasawara
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Hiroaki Nagai
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yohei Sasaki
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yasunobu Okamoto
- Departments of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yoshiyuki Yoshimura
- Departments of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Departments of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Hisao Nemoto
- Departments of Pharmaceutical Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Noriaki Takeda
- Departments of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Hiroyuki Fukui
- Departments of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| |
Collapse
|
23
|
Shill MC, Das AK, Itou T, Karmakar S, Mukherjee PK, Mizuguchi H, Kashiwada Y, Fukui H, Nemoto H. The isolation and synthesis of a novel benzofuran compound from Tephrosia purpurea, and the synthesis of several related derivatives, which suppress histamine H1 receptor gene expression. Bioorg Med Chem 2015; 23:6869-74. [DOI: 10.1016/j.bmc.2015.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022]
|
24
|
Mizuguchi H, Nariai Y, Kato S, Nakano T, Kanayama T, Kashiwada Y, Nemoto H, Kawazoe K, Takaishi Y, Kitamura Y, Takeda N, Fukui H. Maackiain is a novel antiallergic compound that suppresses transcriptional upregulation of the histamine H1 receptor and interleukin-4 genes. Pharmacol Res Perspect 2015; 3:e00166. [PMID: 26516579 PMCID: PMC4618638 DOI: 10.1002/prp2.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/12/2022] Open
Abstract
Kujin contains antiallergic compounds that inhibit upregulation of histamine H1 receptor (H1R) and interleukin (IL)-4 gene expression. However, the underlying mechanism remains unknown. We sought to identify a Kujin-derived antiallergic compound and investigate its mechanism of action. The H1R and IL-4 mRNA levels were determined by real-time quantitative RT-PCR. To investigate the effects of maackiain in vivo, toluene-2,4-diisocyanate (TDI)-sensitized rats were used as a nasal hypersensitivity animal model. We identified (-)-maackiain as the responsible component. Synthetic maackiain showed stereoselectivity for the suppression of IL-4 gene expression but not for H1R gene expression, suggesting distinct target proteins for transcriptional signaling. (-)-Maackiain inhibited of PKCδ translocation to the Golgi and phosphorylation of Tyr(311) on PKCδ, which led to the suppression of H1R gene transcription. However, (-)-maackiain did not show any antioxidant activity or inhibition of PKCδ enzymatic activity per se. Pretreatment with maackiain alleviated nasal symptoms and suppressed TDI-induced upregulations of H1R and IL-4 gene expressions in TDI-sensitized rats. These data suggest that (-)-maackiain is a novel antiallergic compound that alleviates nasal symptoms in TDI-sensitized allergy model rats through the inhibition of H1R and IL-4 gene expression. The molecular mechanism underlying its suppressive effect for H1R gene expression is mediated by the inhibition of PKCδ activation.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yuki Nariai
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Shuhei Kato
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Tomohiro Nakano
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Tomoyo Kanayama
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yoshiki Kashiwada
- Department of Pharmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Hisao Nemoto
- Department of Pharmaceutical Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Kazuyoshi Kawazoe
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima Tokushima University Graduate School3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yoshihisa Takaishi
- Department of Pharmacognosy, Institute of Biomedical Sciences, Tokushima University Graduate School1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| |
Collapse
|
25
|
Mizuguchi H, Ono S, Hattori M, Sasaki Y, Fukui H. Usefulness of HeLa cells to evaluate inverse agonistic activity of antihistamines. Int Immunopharmacol 2013; 15:539-43. [PMID: 23453703 DOI: 10.1016/j.intimp.2013.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/25/2022]
Abstract
Antihistamines are thought to antagonize histamine and prevent it from binding to the histamine H1 receptor (H1R). However, recent studies indicate that antihistamines are classified into two groups, i.e., inverse agonists and neutral antagonists on the basis of their ability to down-regulate the constitutive activity of H1R. As H1R is an allergy-sensitive gene whose expression influences the severity of allergic symptoms, inverse agonists should more potently alleviate allergic symptoms than neutral antagonists by inhibiting H1R constitutive activity. Therefore, it is important to assess inverse agonistic activity of antihistamines. Here we report a novel assay method using HeLa cells expressing H1R endogenously for evaluation of inverse agonistic activity of antihistamines. Pretreatment with inverse agonists down-regulated H1R gene expression below to its basal level. On the other hand, basal H1R mRNA expression was unchanged by neutral antagonist pretreatment. Both inverse agonists and neutral antagonists suppressed histamine-induced H1R mRNA elevation. Classification of antihistamines on the basis of their suppressive activity of basal H1R gene expression was consistent with that of inositol phosphate accumulation in H1R-overexpressed cells. Our data suggest that the assay method using HeLa cells is more convenient and useful than the existing methods and may contribute to develop new antihistamines with inverse agonistic activity.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|