1
|
Kyawsoewin M, Manokawinchoke J, Namangkalakul W, Egusa H, Limraksasin P, Osathanon T. Roles of extracellular adenosine triphosphate on the functions of periodontal ligament cells. BDJ Open 2023; 9:28. [PMID: 37422449 DOI: 10.1038/s41405-023-00147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 07/10/2023] Open
Abstract
OBJECTIVE Adenosine triphosphate (ATP) is an essential nucleotide that is normally present in both intracellular and extracellular compartments. Extracellular ATP (eATP) has a pivotal role in both physiological and pathological processes of periodontal ligament tissues. Here, this review aimed to explore the various functions of eATP that are involved in the control of behaviours and functions of periodontal ligament cells. METHODS To identify the included publications for review, the articles were searched in PubMed (MEDLINE) and SCOPUS with the keywords of adenosine triphosphate and periodontal ligament cells. Thirteen publications were used as the main publications for discussion in the present review. RESULTS eATP has been implicated as a potent stimulator for inflammation initiation in periodontal tissues. It also plays a role in proliferation, differentiation, remodelling, and immunosuppressive functions of periodontal ligament cells. Yet, eATP has diverse functions in regulating periodontal tissue homeostasis and regeneration. CONCLUSION eATP may provide a new prospect for periodontal tissue healing as well as treatment of periodontal disease especially periodontitis. It may be utilized as a useful therapeutic tool for future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Maythwe Kyawsoewin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worachat Namangkalakul
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Zuccarini M, Giuliani P, Ronci M, Caciagli F, Caruso V, Ciccarelli R, Di Iorio P. Purinergic Signaling in Oral Tissues. Int J Mol Sci 2022; 23:ijms23147790. [PMID: 35887132 PMCID: PMC9318746 DOI: 10.3390/ijms23147790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The role of the purinergic signal has been extensively investigated in many tissues and related organs, including the central and peripheral nervous systems as well as the gastrointestinal, cardiovascular, respiratory, renal, and immune systems. Less attention has been paid to the influence of purines in the oral cavity, which is the first part of the digestive apparatus and also acts as the body’s first antimicrobial barrier. In this review, evidence is provided of the presence and possible physiological role of the purinergic system in the different structures forming the oral cavity including teeth, tongue, hard palate, and soft palate with their annexes such as taste buds, salivary glands, and nervous fibers innervating the oral structures. We also report findings on the involvement of the purinergic signal in pathological conditions affecting the oral apparatus such as Sjögren’s syndrome or following irradiation for the treatment of head and neck cancer, and the use of experimental drugs interfering with the purine system to improve bone healing after damage. Further investigations are required to translate the results obtained so far into the clinical setting in order to pave the way for a wider application of purine-based treatments in oral diseases.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Department of Pharmacy, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Stem TeCh Group, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| |
Collapse
|
3
|
Ramos-Junior ES, Pedram M, Lee RE, Exstrom D, Yilmaz Ö, Coutinho-Silva R, Ojcius DM, Morandini AC. CD73-dependent adenosine dampens interleukin-1β-induced CXCL8 production in gingival fibroblasts: Association with heme oxygenase-1 and adenosine monophosphate-activated protein kinase. J Periodontol 2019; 91:253-262. [PMID: 31347162 DOI: 10.1002/jper.19-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND During inflammation, stressed or infected cells can release adenosine triphosphate (ATP) to the extracellular medium, which can be hydrolyzed to adenosine by ectonucleotidases such as ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and 5'-nucleotidase (CD73). The role of CD73 in the modulation of cytokine release by human gingival fibroblasts (HGFs) remains underexplored. Here, we investigated whether CD73-mediated hydrolysis of extracellular ATP (eATP) could affect interleukin (IL)-1β-induced CXCL8 secretion. METHODS The levels of mRNA expression of adenosine receptors, CD39 and CD73 of periodontitis samples were retrieved from a public database. Moreover, HGF mRNA levels were measured by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) after 3, 6, or 24 hours of IL-1β stimulation. IL-1β-induced CXCL8 protein levels were measured after pretreatment with 100-µM eATP in the presence or absence of CD73 inhibitor. The effect of eATP degradation to adenosine on CXCL8 levels was investigated using agonist and antagonist of adenosine receptors. RESULTS Levels of CD39, CD73, and adenosine receptor mRNA were differentially modulated by IL-1β. ATP pretreatment impaired IL-1β-induced CXCL8 secretion and required activation of heme oxygenase-1 (HO-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK). The inhibition of CD73 or the inhibition of adenosine receptors abrogated the ATP effect on CXCL8 secretion. CONCLUSIONS CD73-generated adenosine dampens IL-1β-induced CXCL8 in HGFs and involves HO-1 and pAMPK signaling. These results imply that CD73 is a negative regulator of the inflammatory microenvironment, suggesting that this ectoenzyme could be involved in the generation of deficient CXCL8 gradient in chronic inflammation.
Collapse
Affiliation(s)
- Erivan Schnaider Ramos-Junior
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Michael Pedram
- Doctor of Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Renee E Lee
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.,College of Letters & Sciences, University of California, Berkeley, CA, USA
| | - Drake Exstrom
- Doctor of Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences and Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Ana Carolina Morandini
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| |
Collapse
|
4
|
Barillari G, Monini P, Sgadari C, Ensoli B. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies. Int J Mol Sci 2018; 19:E1418. [PMID: 29747434 PMCID: PMC5983696 DOI: 10.3390/ijms19051418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Infection of uterine cervix epithelial cells by the Human Papilloma Viruses (HPV) is associated with the development of dysplastic/hyperplastic lesions, termed cervical intraepithelial neoplasia (CIN). CIN lesions may regress, persist or progress to invasive cervical carcinoma (CC), a leading cause of death worldwide. CIN is particularly frequent and aggressive in women infected by both HPV and the Human Immunodeficiency Virus (HIV), as compared to the general female population. In these individuals, however, therapeutic regimens employing HIV protease inhibitors (HIV-PI) have reduced CIN incidence and/or clinical progression, shedding light on the mechanism(s) of its development. This article reviews published work concerning: (i) the role of HPV proteins (including HPV-E5, E6 and E7) and of matrix-metalloproteinases (MMPs) in CIN evolution into invasive CC; and (ii) the effect of HIV-PI on events leading to CIN progression such as basement membrane and extracellular matrix invasion by HPV-positive CIN cells and the formation of new blood vessels. Results from the reviewed literature indicate that CIN clinical progression can be monitored by evaluating the expression of MMPs and HPV proteins and they suggest the use of HIV-PI or their derivatives for the block of CIN evolution into CC in both HIV-infected and uninfected women.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|