1
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
2
|
Niu L, Qin X, Wang L, Guo N, Cao H, Li H, Zhao C, Wang H, Fu Y. Upgrading the accumulation of ginsenoside Rd in Panax notoginseng by a novel glycosidase-producing endophytic fungus G11-7. Folia Microbiol (Praha) 2022; 68:441-452. [PMID: 36571675 DOI: 10.1007/s12223-022-01020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022]
Abstract
A novel endophytic fungus producing beta-glucosidase was isolated and characterized from pigeon pea (Cajanus cajan [L.] Millsp.), which has excellent properties in converting ginsenoside Rb1 to ginsenoside Rd in Panax notoginseng. According to the 16S rDNA gene sequence, the G11-7 strain was identified as Fusarium proliferatum, and the accession number KY303906 was confirmed in GenBank. The G11-7 immobilized spores, in which the activity of beta-glucosidase could reach 0.95 U/mL, were co-cultured with P. notoginseng plant material to obtain a continuous beta-glucosidase supply for the biotransformation of ginsenoside Rb1 to Rd. Under the liquid-solid ratio (20:1), initial pH (6.0), and temperature (30 °C) constituents, the maximum ginsenoside Rd yield was obtained as 9.15 ± 0.65 mg/g, which was 3.67-fold higher than that without fungal spore co-culture (2.49 ± 0.98 mg/g). Furthermore, immobilized G11-7 spores showed significant beta-glucosidase producing ability which could be recovered and reused for 6 cycles. Overall, these results suggested that immobilized G11-7 offered a promising and effective approach to enhance the production of ginsenoside Rd for possible nutraceutical and pharmaceutical uses.
Collapse
Affiliation(s)
- Lili Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.,Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, China
| | - Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hanghang Li
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Huimei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China. .,The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Feng Q, Li G, Xia W, Dai G, Zhou J, Xu Y, Liu D, Zhang G. The anti-aging effects of Renshen Guben on thyrotoxicosis mice: Improving immunosenescence, hypoproteinemia, lipotoxicity, and intestinal flora. Front Immunol 2022; 13:983501. [PMID: 36389720 PMCID: PMC9640368 DOI: 10.3389/fimmu.2022.983501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 09/27/2023] Open
Abstract
With the rapid aging of the population, the control of age-related disease susceptibility and prognosis faces greater challenges. There is an urgent need for a strategy to maintain the vitality of elderly people. In this study, the effect of Renshen Guben (RSGB) oral liquid was investigated on an accelerated aging mice model of thyrotoxicosis by conventional detection methods combined with multiomics technology. The results showed that RSGB increased the number of neutrophils and lymphocytes, enhanced the function of lymphocytes, and increased the levels of complement and antimicrobial peptides, which indicated that RSGB improved the immunity of thyrotoxicosis mice at the cellular and molecular levels. RSGB corrected malnutrition in thyrotoxicosis mice by improving anemia, hypoalbuminemia, ion transporters, and vitamin-binding proteins. RSGB significantly reduced the lipotoxicity by reducing the level of fatty acids, triglyceride, sphingolipids, and glucocorticoids, thus increasing the level of docosapentaenoic acid (DPA) and bile acids, which contributed to improve immunosenescence. The intestinal defense ability of thyrotoxicosis mice was enhanced with the increase of bile acids and lactic acid bacteria by the RSGB treatment. The plant metabolomics analysis showed that there were various active components in RSGB oral liquid and medicated serum, including terpenoids, phenolic acids, flavonoids, tannin, alkaloids, organic acids, phenolamines, amino acids, and others. They have antioxidant, immune regulation, and anti-aging effects, which was the material basis of RSGB. Totally, RSGB protected the thyrotoxicosis mice against aging by improving immunosenescence, hypoproteinemia, lipotoxicity, and the intestinal flora. It will be beneficial for improving the disease susceptibility and prognosis of the elderly.
Collapse
Affiliation(s)
- Qin Feng
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guangyan Li
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wenkai Xia
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guoxin Dai
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jidong Zhou
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yan Xu
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guimin Zhang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
4
|
Li J, Huang Q, Yao Y, Ji P, Mingyao E, Chen J, Zhang Z, Qi H, Liu J, Chen Z, Zhao D, Zhou L, Li X. Biotransformation, Pharmacokinetics, and Pharmacological Activities of Ginsenoside Rd Against Multiple Diseases. Front Pharmacol 2022; 13:909363. [PMID: 35928281 PMCID: PMC9343777 DOI: 10.3389/fphar.2022.909363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Ji
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - E. Mingyao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| |
Collapse
|
5
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
6
|
You L, Cha S, Kim MY, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2021; 46:711-721. [DOI: 10.1016/j.jgr.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
|
7
|
Han MJ, Kim DH. Effects of Red and Fermented Ginseng and Ginsenosides on Allergic Disorders. Biomolecules 2020; 10:E634. [PMID: 32326081 PMCID: PMC7226199 DOI: 10.3390/biom10040634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
Both white ginseng (WG, dried root of Panax sp.) and red ginseng (RG, steamed and dried root of Panax sp.) are reported to exhibit a variety of pharmacological effects such as anticancer, antidiabetic, and neuroprotective activities. These ginsengs contain hydrophilic sugar-conjugated ginsenosides and polysaccharides as the bioactive constituents. When taken orally, their hydrophilic constituents are metabolized into hydrophobic ginsenosides compound K, Rh1, and Rh2 that are absorbable into the blood. These metabolites exhibit the pharmacological effects more strongly than hydrophilic parental constituents. To enforce these metabolites, fermented WG and RG are developed. Moreover, natural products including ginseng are frequently used for the treatment of allergic disorders. Therefore, this review introduces the current knowledge related to the effectiveness of ginseng on allergic disorders including asthma, allergic rhinitis, atopic dermatitis, and pruritus. We discuss how ginseng, its constituents, and its metabolites regulate allergy-related immune responses. We also describe how ginseng controls allergic disorders.
Collapse
Affiliation(s)
- Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
8
|
Bidula SM, Cromer BA, Walpole S, Angulo J, Stokes L. Mapping a novel positive allosteric modulator binding site in the central vestibule region of human P2X7. Sci Rep 2019; 9:3231. [PMID: 30824738 PMCID: PMC6397193 DOI: 10.1038/s41598-019-39771-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
P2X7 receptors are important in the regulation of inflammatory responses and immune responses to intracellular pathogens such as Mycobacterium tuberculosis and Toxoplasma gondii. Enhancement of P2X7 receptor responses may be useful in pathogen clearance particularly in individuals with defective microbial killing mechanisms. Ginsenosides from Panax ginseng have been discovered to act as positive allosteric modulators of P2X7. Here we describe a novel modulator binding site identified by computational docking located in the central vestibule of P2X7 involving S60, D318, and L320 in the lower body β-sheets lining the lateral portals. Potentiation of ATP-mediated responses by ginsenosides CK and Rd caused enhanced ionic currents, Ca2+ influx and YOPRO-1 uptake in stably transfected HEK-293 cells (HEK-hP2X7) plus enhanced cell death responses. Potentiation of ATP responses by CK and Rd was markedly reduced by mutations S59A, S60A, D318L and L320A supporting the proposed allosteric modulator binding site. Furthermore, mutation of the conserved residues S60 and D318 led to alterations in P2X7 response and a higher sensitivity to ATP in the absence of modulators suggesting residues in the connecting rods play an important role in regulating P2X7 gating. Identification of this novel binding site location in the central vestibule may also be relevant for structurally similar channels.
Collapse
Affiliation(s)
- Stefan M Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Brett A Cromer
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Chemistry & Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
9
|
Renchinkhand G, Cho SH, Urgamal M, Park YW, Nam JH, Bae HC, Song GY, Nam MS. Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb 1 into Ginsenoside Rd from Panax ginseng. Korean J Food Sci Anim Resour 2017; 37:735-742. [PMID: 29147097 PMCID: PMC5686332 DOI: 10.5851/kosfa.2017.37.5.735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing β-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside (Rb1). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside Rb1 by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside Rb1 into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher β-glucosidase and β-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and 35°C in hydrolysis of ginsenoside Rb1. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside Rb1 fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside Rb1 significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the β-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside Rb1 and convert to Rd during fermentation of the ginseng. The β-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.
Collapse
Affiliation(s)
- Gereltuya Renchinkhand
- Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Korea
| | | | - Magsar Urgamal
- Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Young W Park
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA, and Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Joong Hyeon Nam
- Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Hyung Churl Bae
- Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Korea
| | - Myoung Soo Nam
- Department of Animal Biosystem Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Korea
| |
Collapse
|
10
|
Zhang L, Feng H, He Y, Zhao J, Chen Y, Liu Y. Ginseng saponin Rb1 enhances hematopoietic function and dendritic cells differentiation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:746-749. [PMID: 28655146 DOI: 10.1093/abbs/gmx062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Li Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hui Feng
- Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yibo He
- Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jinfang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yonglin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
11
|
Potential accumulation of protopanaxadiol-type ginsenosides in six-months toxicokinetic study of SHENMAI injection in dogs. Regul Toxicol Pharmacol 2017; 83:5-12. [DOI: 10.1016/j.yrtph.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
|
12
|
Ma B, Kan WLT, Zhu H, Li SL, Lin G. Sulfur fumigation reducing systemic exposure of ginsenosides and weakening immunomodulatory activity of ginseng. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:222-230. [PMID: 27856301 DOI: 10.1016/j.jep.2016.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Ginseng Radix et Rhizoma) is used worldwide for its miracle tonic effects, especially for its immunomodulatory activities. Sulfur fumigation, a fast and convenient method to prevent pesticidal and bacterial contamination in the food industry, has been recently employed during post-harvest processing of ginseng. Our previous studies demonstrated that sulfur fumigation significantly altered the chemical profile of the bioactive ingredients in ginseng. However, the effects of sulfur fumigation on the pharmacokinetics and bioactivities of ginseng remain unknown. AIM OF THE STUDY To examine the effects of sulfur fumigation on the pharmacokinetics and immunomodulatory activities of ginseng. MATERIALS AND METHODS For pharmacokinetic studies, male Sprague-Dawley rats exposed to single/multiple dosages of non-fumigated ginseng (NFG) and sulfur fumigated ginseng (SFG) were investigated using HPLC-MS/MS analysis. For bioactivity studies, male ICR mice were used to compare the immunomodulatory effects of NFG or SFG under both normal and cyclophosphamide (CY)-induced immunocompromised conditions using white blood cell counts, serum cytokine levels, and spleen and thymus weight indices. RESULTS Sulfur fumigation significantly reduced the contents of the bioactive ginsenosides in ginseng, which resulted in drastically low systemic exposure of ginsenosides in SFG-treatment group compared to NFG-treatment group. This observation was consistent with the bioactivities obtained in NFG- and SFG-treatment groups. The bioactivity studies also demonstrated the immunomodulatory effects of NFG but not SFG in the CY-induced immunosuppressed mice. CONCLUSION Sulfur fumigation significantly reduced contents of bioactive ginsenosides in ginseng, leading to dramatic decrease in the systemic exposure of these ginsenosides in the body and detrimental reduction of immunomodulatory effects of ginseng. Our results provided scientific evidences and laid a solid foundation for the needs of thorough evaluation of the significant impact of sulfur fumigation on ginseng and other medicinal herbs.
Collapse
Affiliation(s)
- Bin Ma
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Joint Research Laboratory of Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, PR China
| | - Winnie Lai Ting Kan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Joint Research Laboratory of Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, PR China
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, PR China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, PR China.
| | - Ge Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Joint Research Laboratory of Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, PR China.
| |
Collapse
|
13
|
Park HY, Lee SH, Lee KS, Yoon HK, Yoo YC, Lee J, Choi JE, Kim PH, Park SR. Ginsenoside Rg1 and 20(S)-Rg3 Induce IgA Production by Mouse B Cells. Immune Netw 2015; 15:331-6. [PMID: 26770188 PMCID: PMC4700410 DOI: 10.4110/in.2015.15.6.331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Ginsenosides are the major components of ginseng, which is known to modulate blood pressure, metabolism, and immune function, and has been used to treat various diseases. It has been reported that ginseng and several ginsenosides have immunoregulatory effects on the innate and T cell-mediated immune response. However, their effects on the humoral immune response have not been fully explored. The present study examined the direct effects of red ginseng extract (RGE) and ginsenosides on mouse B cell proliferation and on antibody production and the expression of germline transcripts (GLT) by mouse B cells in vitro. RGE slightly reduced B cell proliferation, but increased IgA production by LPS-stimulated B cells. Furthermore, ginsenoside Rg1 and 20(S)-Rg3 selectively induced IgA production and expression of GLTα transcripts by LPS-stimulated B cells. Collectively, these results suggest that ginsenoside Rg1 and 20(S)-Rg3 can drive the differentiation of B cells into IgA-producing cells through the selective induction of GLTα expression.
Collapse
Affiliation(s)
- Ha-Yan Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyu-Seon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hee-Kyung Yoon
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jae Eul Choi
- College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
14
|
Enrichment of ginsenoside Rd in Panax ginseng extract with combination of enzyme treatment and high hydrostatic pressure. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Helliwell RM, ShioukHuey CO, Dhuna K, Molero JC, Ye JM, Xue CC, Stokes L. Selected ginsenosides of the protopanaxdiol series are novel positive allosteric modulators of P2X7 receptors. Br J Pharmacol 2015; 172:3326-40. [PMID: 25752193 DOI: 10.1111/bph.13123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The P2X7 receptor is an ATP-gated ion channel predominantly expressed in immune cells and plays a key role in inflammatory processes. Ginseng is a well-known Chinese herb with both pro- and anti-inflammatory properties and many of its actions have been ascribed to constituent ginsenosides. We screened a number of ginsenoside compounds for pharmacological activity at P2X7 receptors, that might contribute to the reported immunomodulatory actions of ginseng. EXPERIMENTAL APPROACH We used several assays to measure responses of P2X7 receptors, ATP-mediated dye uptake, intracellular calcium measurement and whole-cell patch-clamp recordings. HEK-293 cells stably expressing human P2X7 receptors were used in addition to mouse macrophages endogenously expressing P2X7 receptors. KEY RESULTS Four ginsenosides of the protopanaxdiol series, Rb1, Rh2, Rd and the metabolite compound K (CK) potentiated the dye uptake responses of P2X7 receptors, whereas other ginsenosides tested were ineffective (1-10 μM). The potentiation was rapid in onset, required a threshold concentration of ATP (>50 μM) and had an EC50 of 1.08 μM. CK markedly enhanced ATP-activated P2X7 currents, probably via an extracellular site of action. One of the consequences of this potentiation effect is a sustained rise in intracellular Ca(2+) that could account for the decrease in cell viability in mouse macrophages after a combination of 500 μM ATP and 10 μM CK that are non-toxic when applied alone. CONCLUSIONS AND IMPLICATIONS This study identifies selected ginsenosides as novel potent allosteric modulators of P2X7 channels that may account for some of the reported immune modulatory actions of protopanaxdiol ginsenosides in vivo.
Collapse
Affiliation(s)
- R M Helliwell
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C O ShioukHuey
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - K Dhuna
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J C Molero
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J-M Ye
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C C Xue
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - L Stokes
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.,School of Pharmacy, University of East Anglia, Norwich, UK
| |
Collapse
|
16
|
Moragues MD, Rementeria A, Sevilla MJ, Eraso E, Quindos G. Candidaantigens and immune responses: implications for a vaccine. Expert Rev Vaccines 2014; 13:1001-12. [DOI: 10.1586/14760584.2014.932253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|