1
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Zhang D, Qi D, Xu Y, Hu C, Zhang X, Yang Q, Shang Z, Zhang G. The S1PR1 agonist SEW2871 promotes the survival of skin flap. Can J Physiol Pharmacol 2021; 99:1280-1287. [PMID: 34310896 DOI: 10.1139/cjpp-2021-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skin flap transfer is an important method to repair and reconstruct various tissue defects; however, avascular necrosis largely affects the success of flap transfer. The sphingosine 1-phosphate receptor 1 (S1PR1) agonist SEW2871 has been proven to ameliorate ischemic injury; however, its effect on flap survival has not been reported. In this study, an experimental skin flap model was established in rats to investigate the roles of SEW2871. The results indicated that SEW2871 greatly increased the survival of the skin flap, alleviated pathological injury, promoted the angiogenesis, and inhibited cells apoptosis in skin flap tissues. SEW2871 activated S1PR1 downstream signaling pathways, including heat shock protein 27 (HSP27), extracellular regulated protein kinases (ERK), and protein kinase B (Akt). In addition, SEW2871 promoted the expression of S1PR1. These findings may provide novel insights for skin flap transfer.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Dongxu Qi
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yi Xu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Chunhe Hu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Xiao Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Qingjian Yang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Zikun Shang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Guisheng Zhang
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
3
|
Liu H, Li L, Chen Z, Song Y, Liu W, Gao G, Li L, Jiang J, Xu C, Yan G, Cui H. S1PR2 Inhibition Attenuates Allergic Asthma Possibly by Regulating Autophagy. Front Pharmacol 2021; 11:598007. [PMID: 33643037 PMCID: PMC7902893 DOI: 10.3389/fphar.2020.598007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
This study is to investigate the role of Sphingosine-1-phosphate (S1P) in the asthma progression, and the involvement of autophagy. Airway remodeling mice were subjected to the HE, PAS, and Masson staining. Protein expression levels in the tissues, samples and model cells were detected with ELISA, Western blot analysis, and immunohistochemical/immunofluorescent analysis. The S1P2 receptor antagonist JTE-013 decreased the inflammatory cell infiltration and goblet cell production in asthmatic mice tissues. The IL-1, IL-4, IL-5 and serum IgE contents were decreased in bronchoalveolar lavage fluid, while the Beclin1 expression in lung tissues was decreased. The LC3B1 to LC-3B2 conversion was decreased, with increased P62 accumulation and decreased p-P62 expression. In airway remodeling mice, JTE-013 significantly decreased collagen deposition in lung tissues and decreased smooth muscle cell smooth muscle activating protein expression. In lung tissue, the expression levels of Beclin1 were decreased, with decreased LC3B1 to LC-3B2 conversion, as well as the increased P62 accumulation and decreased p-P62 expression. However, these effects were reversed by the RAC1 inhibitor EHT 1864. Similar results were observed for the silencing of S1P2 receptor in the cells, as shown by the decreased Beclin1 expression, decreased LC3B1 to LC-3B2 conversion, increased P62 accumulation, and decreased p-P62 expression. The smooth muscle activators were significantly decreased in the JTE-013 and EHT1864 groups, and the EHT 1864 + S1P2-SiRNA expression level was increased. S1P is involved in the progression of asthma and airway remodeling, which may be related to the activation of S1PR2 receptor and inhibition of autophagy through RAC1.
Collapse
Affiliation(s)
- Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Zhengai Chen
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Weidong Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Ge Gao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
4
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Okimoto A, Yamamoto R, Hirose J, Shimatani K, Koshika T, Maeda M, Hattori K, Morokata T. ASP1126, a Novel Sphingosine-1-Phosphate-Selective Agonist With a Favorable Safety Profile, Prolongs Allograft Survival in Rats and Nonhuman Primates in Combination With Tacrolimus With a Broad Safety Margin for Bradycardia. Transplant Proc 2019; 51:2081-2098. [PMID: 31399186 DOI: 10.1016/j.transproceed.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that acts through the members of a family of 5 G protein-coupled receptors (S1P1 to S1P5). Among these, S1P1 is a major regulator of lymphocyte trafficking. Fingolimod, whose active metabolite, fingolimod phosphate, acts as a nonselective S1P-receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating lymphocyte trafficking via downregulation of S1P1 expression on lymphocytes. Here, we describe the pharmacologic profile of a novel S1P1 agonist, ASP1126. ASP1126 preferentially activated S1P1 compared to S1P3 in rat and human guanosine-5'-(γ-thio)-triphosphate (GTPγS) assays. Oral single administration of ASP1126 decreased the number of peripheral lymphocytes and repeated dosing showed a cumulative effect on lymphopenia in both rats and monkeys. ASP1126 prolonged allograft survival in a rat heterotopic heart transplantation model in combination with a subtherapeutic dose of tacrolimus that was independent of drug-drug interactions. In addition, in nonhuman primate (NHP) renal transplantation, pretreatment with ASP1126 reduced not only the number of naive T cells and central memory T cells but also effector memory T cells in the peripheral blood, all of which could contribute to acute graft rejection and prolonged allograft survival in combination with tacrolimus. Further, we confirmed that ASP1126 has a broad ranging safety margin with respect to its effect on lung weight in rats and bradycardia in NHPs, which were the adverse events found in clinical studies of fingolimod. ASP1126 with improved safety profile has the potential to be an adjunct therapy in combination with tacrolimus in clinical transplantation.
Collapse
Affiliation(s)
- Akira Okimoto
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan.
| | - Rie Yamamoto
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Jun Hirose
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | | | | - Masashi Maeda
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | | | |
Collapse
|
6
|
Li Y, Wang F, Guo R, Zhang Y, Chen D, Li X, Tian W, Xie X, Jiang Z. Exosomal sphingosine 1‐phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life 2019; 71:1284-1292. [PMID: 30889317 DOI: 10.1002/iub.2035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yingmei Li
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Fang Wang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Rong Guo
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Yinyin Zhang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Dandan Chen
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Xue Li
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Wenliang Tian
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Xinsheng Xie
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| | - Zhongxing Jiang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou University Zhengzhou Henan, 450052 China
| |
Collapse
|
7
|
Marciniak A, Camp SM, Garcia JGN, Polt R. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 2018; 28:3585-3591. [PMID: 30409535 DOI: 10.1016/j.bmcl.2018.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
8
|
Sinusoidal protection by sphingosine-1-phosphate receptor 1 agonist in liver ischemia-reperfusion injury. J Surg Res 2017; 222:139-152. [PMID: 29273365 DOI: 10.1016/j.jss.2017.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional and structural damages in sinusoidal endothelial cells (SECs) have a crucial role during hepatic ischemia-reperfusion injury (IRI). In regulating endothelial function, sphingosine-1-phosphate receptor 1 (S1PR1), which is a G protein-coupled receptor, has an important role. The present study aimed to clarify whether SEW2871, a selective S1PR1 agonist, can attenuate hepatic damage caused by hepatic IRI, focusing on SEC functions. METHODS In vivo, using a 60-min partial-warm IRI model, mice were treated with SEW2871 or without it (with vehicle). In vitro, isolated SECs pretreated with SEW2871 or without it (with vehicle) were incubated with hydrogen peroxide. RESULTS Compared with the IRI + vehicle group, SEW2871 administration significantly improved serum transaminase levels and liver damage, attenuated infiltration of Ly-6G and mouse macrophage antigen-1-positive cells, suppressed the expression of vascular cell adhesion molecule-1 and proinflammatory cytokines in the liver, and enhanced the expressions of endothelial nitric oxide synthase (eNOS) and vascular endothelial (VE) cadherin in the liver (eNOS/β-actin [median]: 0.24 versus 0.53, P = 0.008; VE-cadherin/β-actin [median]: 0.21 versus 0.94, P = 0.008). In vitro, compared with the vehicle group, pretreatment of SECs with SEW2871 significantly increased the expressions of eNOS and VE-cadherin (eNOS/β-actin [median]: 0.22 versus 0.29, P = 0.008; VE-cadherin/β-actin [median]: 0.38 versus 0.67, P = 0.008). As results of investigation of prosurvival signals, SEW2871 significantly increased Akt phosphorylation in SECs and decreased lactate dehydrogenase levels in supernatants of SECs. CONCLUSIONS These results indicate that S1PR1 agonist induces attenuation of hepatic IRI, which might be provided by preventing SEC damage. S1PR1 may be a therapeutic target for the prevention of early sinusoidal injury after hepatic IRI.
Collapse
|
9
|
Gong WL, Sha C, Du G, Shan ZG, Qi ZQ, Zhou SF, Yang N, Zhao YX. Preoperative application of combination of portal venous injection of donor spleen cells and intraperitoneal injection of rapamycin prolongs the survival of cardiac allografts in mice. ASIAN PAC J TROP MED 2017. [PMID: 28647182 DOI: 10.1016/j.apjtm.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the effects of preoperative portal venous injection of donor spleen cells (PVIDSC) and intraperitoneal injection of rapamycin in the acute rejection of cardiac allograft in mice and the underlying mechanisms. METHODS Homogenous female B6 mice and BALB/c mice were used as recipients and donors of heart transplantation. These mice were randomly divided into different groups and received PVIDSC alone, rapamycin alone, or PVIDSC and rapamycin combined therapy. In addition, the underlying mechanism was studied by measuring a number of cytokines. RESULTS Preoperative combination of PVIDSC and intraperitoneal injection of rapamycin significantly prolonged the survival of heterotopic cardiac allograft in mice, but had no effects on the survival time of cardiac allografts in mice pre-sensitized by skin grafting. Preoperative combination of PVIDSC and intraperitoneal injection of rapamycin increased the expression of IL-10 and Foxp3 and reduced the expression of INF-. Short-term preoperative administration of rapamycin promotes the expression of CD4+CD25+Foxp3+ regulator T cells. However, preoperative using alone of rapamycin, or combination of PVIDSC and rapamycin had no effects on the inhibition of proliferation of memory T cells. CONCLUSIONS Preoperative application of combination of PVIDSC and rapamycin significantly prolonged the survival time of cardiac allografts in mice but not in mice pre-sensitized by skin grafting. This may be explained by the fact that combination of PVIDSC and rapamycin inhibited the cellular immune response and induced the expression of IL-10 from Tr1 cells and CD4+CD25+FoxP3+ regulatory T cells.
Collapse
Affiliation(s)
- Wen-Lin Gong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chuang Sha
- Department of Cardiac Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Gang Du
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhong-Gui Shan
- Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Su-Fang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guang Xi Medical University, Nanning 530021, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guang Xi Medical University, Nanning 530021, China
| |
Collapse
|
10
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|