1
|
German IJS, Barbalho SM, Andreo JC, Zutin TLM, Laurindo LF, Rodrigues VD, Araújo AC, Guiguer EL, Direito R, Pomini KT, Shinohara AL. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024; 14:560. [PMID: 39452941 PMCID: PMC11509841 DOI: 10.3390/metabo14100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Tereza Lais Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed. ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| |
Collapse
|
2
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
3
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
4
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
5
|
Shin JW, Lee ER, Noh H, Kwak J, Gal JY, Park HJ, Kim S, Song HK, Seo K, Han BS. Novel Herbal Therapeutic YH23537 Improves Clinical Parameters in Ligature-Induced Periodontal Disease Model in Beagle Dogs. Int J Dent 2023; 2023:8130287. [PMID: 37159594 PMCID: PMC10163972 DOI: 10.1155/2023/8130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023] Open
Abstract
Currently, available medicine does not satisfy the clinical unmet needs of periodontal disease. Therefore, novel drugs with improved efficacy profiles are needed. We previously demonstrated that YH14642, water extracts of Notoginseng Radix and Rehmanniae Radix Preparata, improved probing depths in double-blind phase II clinical trial. However, it still has hurdles for commercialization due to the low efficiency of active compound extraction. To resolve this issue, we developed YH23537 through process optimization to extract active compounds efficiently while still achieving the chemical profile of YH14642. In this study, we investigated the therapeutic effects of YH23537 compared with YH14642 using a canine model of ligature-induced periodontitis. Human gingival fibroblast (hGF) cells were treated with various concentrations of YH23537 or YH14642 with lipopolysaccharide (LPS) for 24 hr. IL-6 and IL-8 levels in the conditioned media were determined using Luminex. Sixteen 3-year-old male beagle dogs had their teeth scaled and polished using a piezo-type ultrasonic scaler under general anesthesia and brushed once daily for the following 2 weeks. Two weeks after the scaling procedure, the left upper second premolar (PM2), third premolar (PM3), and fourth premolar (PM4) as well as the left lower PM3, PM4, and first molar (M1) were ligated with silk-wire twisted ligatures. The dogs were fed with soft moistened food to induce periodontitis for 8 weeks, and the ligatures were then removed. YH23537 and YH14642 were administered for 4 weeks, and clinical periodontal parameters such as plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL), and bleeding on probing (BoP) were determined before and 1, 2, 3, and 4 weeks after treatment. YH23537 inhibited IL-6 and IL-8 secretion in a dose-dependent manner in hGF cells stimulated with LPS. The IC50 values for YH23537 were 43 and 54 μg/ml for IL-6 and IL-8, respectively, while the values for YH14642 were 104 and 117 μg/ml, respectively. In the animal study, clinical parameters including GI, PD, CAL, and BoP were significantly increased after 8 weeks of ligature-induced periodontitis. The YH23537 300 and YH23537 900 mg groups had significant improvements in CAL from 1 to 4 weeks after treatment in comparison to the placebo group. GR values in the YH23537 900 mg group were decreased throughout the treatment period. GI values were also reduced significantly after 4-week treatment with 300 and 900 mg of YH23537. YH23537 at 300 mg doses showed comparable efficacy for CAL and GR with 1,000 mg of YH14642. YH23537 showed therapeutic efficacy against periodontitis in dogs, mediated by anti-inflammatory effects. These findings indicate that YH23537 has the potential for further development as a new drug for patients suffering from periodontal disease.
Collapse
Affiliation(s)
- Jang-Woo Shin
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Eui-Ri Lee
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hyunwoo Noh
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jiyoon Kwak
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ji-Yeong Gal
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Hyun-Je Park
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seongkyu Kim
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Hyun-Kyung Song
- Department of Bio Applied Toxicology, Toxicology Research Center, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan-si, Chungcheongnam–do, Republic of Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Beom Seok Han
- Department of Bio Applied Toxicology, Toxicology Research Center, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan-si, Chungcheongnam–do, Republic of Korea
| |
Collapse
|
6
|
Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol 2022; 14:2131117. [PMID: 36212989 PMCID: PMC9542882 DOI: 10.1080/20002297.2022.2131117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to oral microorganisms, have always affected human health and quality of life. These complex microbiota present in different parts of the mouth can cause chronic infections in the oral cavity under certain conditions, some of which can also lead to acute and systemic diseases. With the mutation of related microorganisms and the continuous emergence of drug-resistant strains, in order to prevent and treat related diseases, in addition to the innovation of diagnosis and treatment technology, the development of new antimicrobial drugs is also important. Catechins are polyphenolic compounds in green tea, some of which are reported to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin-3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, which acts against a variety of gram-positive and negative bacteria, as well as some fungi and viruses. This review aims to summarize the research progress on the activity of EGCG against common oral disease-associated organisms and discuss the mechanisms of these actions, hoping to provide new medication strategies for the prevention and treatment of oral infectious diseases, the future research of EGCG and its translation into clinical practice are also discussed.
Collapse
Affiliation(s)
- Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|
8
|
Hr R, Jagwani S, Shenoy PA, Jadhav K, Shaikh S, Mutalik SP, Mullick P, Mutalik S, Jalalpure S, Sikarwar MS, Dhamecha D. Thermoreversible gel of green tea extract: Formulation and evaluation for the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Shin SJ, Moon SH, Kim HJ, Oh SH, Bae JM. Oral Microbiome Using Colocasia antiquorum var. esculenta Extract Varnish in a Mouse Model with Oral Gavage of P. gingivalis ATCC 53978. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040506. [PMID: 35454345 PMCID: PMC9029942 DOI: 10.3390/medicina58040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective: There is increasing interest in preventing periodontitis using natural products. The purpose of this study was to investigate the effect of Colocasia antiquorum var. esculenta (CA) varnish on the oral microbiome and alveolar bone loss in a mouse periodontitis model. Materials and Methods: Antibacterial activity against Porphyromonas gingivalis (P. gingivalis) ATCC 53978 and cell cytotoxicity using CCK-8 on L929 cells were measured. Balb/c mice were assigned into five groups (negative control, positive control, CA in drinking water, varnish, and CA varnish). P. gingivalis was administered to the mice by oral gavage three times. After sacrifice, the oral microbiome and the levels of the inflammatory cytokine IL-1β and matrix metalloproteinase-9 were analyzed. Alveolar bone loss was measured using micro-computed tomography. Results: CA extract showed an antibacterial effect against P. gingivalis (p < 0.05) and showed no cytotoxicity at that concentration (p > 0.05). Although alpha diversity of the oral microbiome did not statistically differ between the groups (p > 0.05), the relative abundance of dominant bacteria tended to be different between the groups. The inflammatory cytokine IL-1β was reduced in the CA varnish group (p < 0.05), and no difference was observed in MMP-9 expression and alveolar bone loss (p > 0.05). Conclusions: CA varnish did not affect the overall microflora and exhibited an anti-inflammatory effect, suggesting that it is possibility a suitable candidate for improving periodontitis.
Collapse
Affiliation(s)
- Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
| | - Seong-Hee Moon
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Department of Oral Anatomy, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Seung-Han Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|
10
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
11
|
Nawrot-Hadzik I, Matkowski A, Kubasiewicz-Ross P, Hadzik J. Proanthocyanidins and Flavan-3-ols in the Prevention and Treatment of Periodontitis-Immunomodulatory Effects, Animal and Clinical Studies. Nutrients 2021; 13:nu13010239. [PMID: 33467650 PMCID: PMC7830097 DOI: 10.3390/nu13010239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This paper continues the systematic review on proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontal disease and covers the immunomodulatory effects, and animal- and clinical studies, while the other part discussed the direct antibacterial properties. Inflammation as a major response of the periodontal tissues attacked by pathogenic microbes can significantly exacerbate the condition. However, the bidirectional activity of phytochemicals that simultaneously inhibit bacterial proliferation and proinflammatory signaling can provide a substantial alleviation of both cause and symptoms. The modulatory effects on various aspects of inflammatory and overall immune response are covered, including confirmed and postulated mechanisms of action, structure activity relationships and molecular targets. Further, the clinical relevance of flavan-3-ols and available outcomes from clinical studies is analyzed and discussed. Among the numerous natural sources of flavan-3-ols and proanthocyanidins the most promising are, similarly to antibacterial properties, constituents of various foods, such as fruits of Vaccinium species, tea leaves, grape seeds, and tannin-rich medicinal herbs. Despite a vast amount of in vitro and cell-based evidence of immunomodulatory there are still only a few animal and clinical studies. Most of the reports, regardless of the used model, indicated the efficiency of these phytochemicals from cranberries and other Vaccinium species and tea extracts (green or black). Other sources such as grape seeds and traditional medicinal plants, were seldom. In conclusion, the potential of flavan-3-ols and their derivatives in prevention and alleviation of periodontal disease is remarkable but clinical evidence is urgently needed for issuing credible dietary recommendation and complementary treatments.
Collapse
Affiliation(s)
- Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
- Correspondence:
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Wroclaw Medical University, 50425 Wroclaw, Poland; (P.K.-R.); (J.H.)
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, 50425 Wroclaw, Poland; (P.K.-R.); (J.H.)
| |
Collapse
|
12
|
Vo TTT, Chu PM, Tuan VP, Te JSL, Lee IT. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants (Basel) 2020; 9:antiox9121211. [PMID: 33271934 PMCID: PMC7760335 DOI: 10.3390/antiox9121211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the involvement of oxidative stress, which is simply described as the imbalance between oxidants and antioxidants in favor of the former, in the development of periodontal disease that is the most common inflammatory disease in the oral cavity. Thus, the potential of antioxidant phytochemicals as adjunctively preventive and therapeutic agents against the initiation and progression of periodontal disease is a topic of great interest. The current review firstly aims to provide updated insights about the immuno-inflammatory pathway regulated by oxidative stress in periodontal pathology. Then, this work further presents the systemic knowledge of antioxidant phytochemicals, particularly the pharmacological activities, which can be utilized in the prevention and treatment of periodontal disease. Additionally, the challenges and future prospects regarding such a scope are figured out.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam;
| | - Joyce Si-Liang Te
- Department of Medical Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5162); Fax: +886-2-27362295
| |
Collapse
|
13
|
Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS, Chen CH, Shen CL. Osteoprotective Roles of Green Tea Catechins. Antioxidants (Basel) 2020; 9:E1136. [PMID: 33207822 PMCID: PMC7696448 DOI: 10.3390/antiox9111136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the second most common disease only secondary to cardiovascular disease, with the risk of fracture increasing with age. Osteoporosis is caused by an imbalance between osteoblastogenesis and osteoclastogenesis processes. Osteoclastogenesis may be enhanced, osteoblastogenesis may be reduced, or both may be evident. Inflammation and high reactive oxygen enhance osteoclastogenesis while reducing osteoblastogenesis by inducing osteoblast apoptosis and suppressing osteoblastic proliferation and differentiation. Catechins, the main polyphenols found in green tea with potent anti-oxidant and anti-inflammatory properties, can counteract the deleterious effects of the imbalance of osteoblastogenesis and osteoclastogenesis caused by osteoporosis. Green tea catechins can attenuate osteoclastogenesis by enhancing apoptosis of osteoclasts, hampering osteoclastogenesis, and prohibiting bone resorption in vitro. Catechin effects can be directly exerted on pre-osteoclasts/osteoclasts or indirectly exerted via the modulation of mesenchymal stem cells (MSCs)/stromal cell regulation of pre-osteoclasts through activation of the nuclear factor kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Catechins also can enhance osteoblastogenesis by enhancing osteogenic differentiation of MSCs and increasing osteoblastic survival, proliferation, differentiation, and mineralization. The in vitro effects of catechins on osteogenesis have been confirmed in several animal models, as well as in epidemiological observational studies on human subjects. Even though randomized control trials have not shown that catechins provide anti-fracture efficacy, safety data in the trials are promising. A large-scale, placebo-controlled, long-term randomized trial with a tea regimen intervention of optimal duration is required to determine anti-fracture efficacy.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Joanna Y. Chyu
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Drinking green tea alleviates alveolar bone resorption in ligature-induced periodontitis in mice. J Oral Biosci 2020; 62:162-168. [PMID: 32437962 DOI: 10.1016/j.job.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVES It has been reported that green tea exerts antibacterial, anti-inflammatory, and antioxidant effects. The purpose of the present study was to evaluate the effects of drinking green tea on bone resorption in ligature-induced periodontitis in mice. METHODS Sixty C57BL/6 eight-week-old male mice were used. To induce periodontitis, a ligature was placed for 7 days around the upper left second maxillary molar. After ligature removal, the animals were administered different concentrations of green tea (1.5 g/60 mL, 3 g/60 mL, or 6 g/60 mL) or distilled water. At 1 and 2 weeks of administration, the animals were sacrificed and micro-CT images of the maxillae were taken. Next, the depth and area of alveolar bone loss in the buccal and palatal sides were measured. The number of inflammatory cells and osteoclasts in histological sections were counted. RESULTS The result showed ligature-induced alveolar bone loss. Green tea inhibited ligature-induced bone loss in the buccal side in a dose-dependent manner. Histologically, ligature increased the number of inflammatory cells and osteoclasts, but this effect was alleviated by green tea. CONCLUSIONS Evidence from this animal experiment suggested that drinking green tea would be potentially beneficial to reduce alveolar bone loss in ligature-induced periodontitis.
Collapse
|
15
|
Liu J, Lu Y, Liu J, Jin C, Meng Y, Pei D. Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health 2019; 19:73. [PMID: 31046751 PMCID: PMC6498622 DOI: 10.1186/s12903-019-0768-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) was recently proposed to have the potential to regulate bone metabolism, however, its influence on osteogenesis remains controversial. The present study aimed to investigate the effects of EGCG on the proliferation and osteogenesis of human periodontal ligament cells (hPDLCs). METHODS Cells were cultured in osteogenic medium and treated with EGCG at various concentrations. Cell proliferation was analyzed using a CCK-8 assay and acridine orange (AO)/ethidium bromide (EB) staining. Flow cytometry was used to measure the intracellular reactive oxygen species (ROS) potential of hPDLCs. The expression levels of osteogenic marker genes and proteins in hPDLCs, including type I collagen (COL1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osterix (OSX), were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. In addition, alkaline phosphatase (ALP) activity was monitored both quantitatively and qualitatively. Extracellular matrix mineralization was further analyzed by alizarin red S staining. RESULTS The results showed that EGCG concentrations from 6 to 10 μM increased the ROS level and inhibited the cell proliferation of hPDLCs. EGCG concentrations from 2 to 8 μM effectively increased extracellular matrix mineralization, in which 4 and 6 μM EGCG generated the most mineralizing nodules. The ALP activity and the mRNA and protein expression levels of the tested osteogenic markers were most strongly up-regulated by treatment with 4 and 6 μM EGCG. CONCLUSIONS The present study demonstrated that EGCG might promote the osteogenesis of hPDLCs in a dose-dependent manner, with concentrations of 4 and 6 μM EGCG showing the strongest osteogenic enhancement without cytotoxicity, indicating a promising role for EGCG in periodontal regeneration in patients with deficient alveolar bone in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jin Liu
- Department of Periodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Changxiong Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
16
|
Sulijaya B, Takahashi N, Yamazaki K, Yamazaki K. Nutrition as Adjunct Therapy in Periodontal Disease Management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40496-019-0216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
de Almeida JM, Marques BM, Novaes VCN, de Oliveira FLP, Matheus HR, Fiorin LG, Ervolino E. Influence of adjuvant therapy with green tea extract in the treatment of experimental periodontitis. Arch Oral Biol 2019; 102:65-73. [PMID: 30974379 DOI: 10.1016/j.archoralbio.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022]
Abstract
AIM This study evaluated the effects of topical green tea extract solution (GTE) as adjuvant therapy to mechanical debridement for the treatment of experimental periodontitis (EP). MATERIAL AND METHODS We used 120 male rats (Rattus norvegicus albinus - Wistar), divided into the following four groups: NEP (sham) (n = 30): no experimental periodontitis (NEP), only simulation of EP by installation and removal of a ligature; EP (n = 30): EP induction by ligature; SRP (n = 30): EP, scaling and root planing (SRP), and irrigation with physiological saline solution; SRP/GT (n = 30): EP, SRP, and irrigation with GTE. Histologic analysis and immunohistochemistry were performed for detection of interleukin (IL)1ß, tumor necrosis factor-alpha (TNF-α), IL-10, and anti-tartrate resistant acid phosphatase (TRAP) in the furcation area. The percentage of bone in the furcation (PBF) was considered the primary variable and evaluated at 14, 22, and 37 days. The data from the histological analysis and the IL- 1B, TNF- A, and IL-10 were submitted to a Kruskal-Wallis variance test and Dunn's posttest (p ≤ 0.05). The histometric data and TRAP were submitted to analysis of variance (ANOVA) and Tukey's posttest (p ≤ 0.05). RESULTS The SRP/GT group showed lower inflammatory process, lower immunolabeling pattern of IL-1ß and TNF-α, and greater immunolabeling pattern of IL-10 compared with the EP and SRP groups at 22 days. Fewer TRAP-positive multinucleated osteoclasts were observed in all periods in the SRP/GT group (5.22 ± 0.65; 7.33 ± 0.80; 8.55 ± 1.15) compared with the SRP group (30.67 ± 8.55; 13.22 ± 0.77; 13.87 ± 0.77). Higher PBF was observed in all periods in the SRP/GT group (74.65 ± 7.14; 76.61 ± 5.36; 79.24 ± 3.75) compared with the SRP group (61.60 ± 9.48; 54.84 ± 9.06; 53.25 ± 9.66). CONCLUSION GTE adjuvant to SRP reduced inflammation, osteoclastic activity, and alveolar bone loss in EP.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil.
| | - Bianca Mayara Marques
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Vivian Cristina Noronha Novaes
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Fred Lucas Pinto de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Henrique Rinaldi Matheus
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Luiz Guilherme Fiorin
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Edilson Ervolino
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Science - Histology Division, Araçatuba, SP, Brazil
| |
Collapse
|
18
|
Bunte K, Hensel A, Beikler T. Polyphenols in the prevention and treatment of periodontal disease: A systematic review of in vivo, ex vivo and in vitro studies. Fitoterapia 2018; 132:30-39. [PMID: 30496806 DOI: 10.1016/j.fitote.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022]
Abstract
Plant-derived polyphenols with antimicrobial and immunomodulatory characteristics appear to provide a variety of oral health benefits. Thus, the aim of the present study was to review the scientific literature to identify these effects of polyphenols on periodontal pathogens and inflammation. A MEDLINE search from 1st January 2013 to 18th January 2018 was performed to identify studies reporting polyphenol-containing plant extracts. Reports regarding pure compounds and essential oils, as well as effects on bacteria that are not defined as periodontal pathogens, were excluded. Thirty-eight studies matched the selection criteria. Studies on immunomodulatory effects included in vitro, ex vivo, and in vivo studies (n = 23), whereas studies reporting antibacterial effects against periodontal pathogens included only in vitro studies (n = 18). Three studies were included in both groups. The antibacterial effects were characterised by inhibition of bacterial growth, adhesion to oral cells, and enzymatic activity. Decreased secretion of pro-inflammatory and increased secretion of anti-inflammatory cytokines were demonstrated. Higher attachment levels, lower inflammation, and bone loss were reported by in vivo studies. Due to the high heterogeneity, it is difficult to draw clear conclusions for applicability; nevertheless, polyphenols have great potential as antimicrobial and immunomodulatory substances in the treatment and prevention of periodontal disease.
Collapse
Affiliation(s)
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstr. 48, 48149 Münster, Germany.
| | - Thomas Beikler
- University Medical Centre Hamburg-Eppendorf, Department of Periodontics, Preventive and Restorative Dentistry, Building O58, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Yonezawa D, Nagai K, Ochiai A, Taniguchi M, Tabeta K, Maeda T, Terao Y. Peptides from rice endosperm protein restrain periodontal bone loss in mouse model of periodontitis. Arch Oral Biol 2018; 98:132-139. [PMID: 30485826 DOI: 10.1016/j.archoralbio.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Food-derived peptides have been reported to exhibit antibacterial activity against periodontal pathogenic bacteria. However, no effect has been shown on inflammation and bone resorption in periodontal pathology. The overall objective of the current study was to investigate how rice peptides influence biological defense mechanisms against periodontitis-induced inflammatory bone loss, and identify their novel functions as a potential anti-inflammatory drug. DESIGN The expression of inflammatory and osteoclast-related molecules was examined in mouse macrophage-derived RAW 264.7 cell cultures using qPCR. Subsequently, the effect of these peptides on inflammatory bone loss in mouse periodontitis was examined using a mouse model of tooth ligation. Briefly, periodontal bone loss was induced for 7 days in mice by ligating the maxillary second molar and leaving the contralateral tooth un-ligated (baseline control). The mice were microinjected daily with the peptide in the gingiva until the day before euthanization. One week after the ligation, TRAP-positive multinucleated cells (MNCs) were enumerated from five random coronal sections of the ligated sites in each mouse. RESULTS Rice peptides REP9 and REP11 significantly inhibited transcription activity of inflammatory and osteoclast-related molecules. Local treatment with the rice peptides, in mice subjected to ligature-induced periodontitis, inhibited inflammatory bone loss, explaining the decreased numbers of osteoclasts in bone tissue sections. CONCLUSION Therefore, these data suggested that the rice peptides possess a protective effect against periodontitis.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daisuke Yonezawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
20
|
Dietary Polyphenols and Periodontitis-A Mini-Review of Literature. Molecules 2018; 23:molecules23071786. [PMID: 30036945 PMCID: PMC6099717 DOI: 10.3390/molecules23071786] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Periodontitis, which is a chronic infection and disease of the periodontium, is a significant global health burden and is linked to other chronic health conditions such as diabetes and cardiovascular diseases. Dietary polyphenols present in a wide variety of plant-based foods, herbs, and botanicals have been shown to exert antimicrobial, anti-inflammatory, and reduced osteoclast and alveolar bone loss activities in animal models of periodontitis. Polyphenol-containing beverages and foods especially green tea and its active catechin epigallocatechin-3-gallate, cranberries, pomegranates, and fruit and vegetable extracts have reported bacteriostatic/bactericidal activity against microbial species such as P. gingivalis and shown total bacterial burden in clinical studies. These polyphenols also exhibit anti-inflammatory and antioxidant effects, which have the potential to impact various biological mechanisms for reducing the initiation and progression of periodontitis. The main objective of this mini-review is to focus on the mechanisms of action of dietary polyphenols in improving the pathophysiology underlying chronic inflammatory diseases like periodontitis based on pre-clinical and clinical models.
Collapse
|
21
|
Lin M, Hu Y, Wang Y, Kawai T, Wang Z, Han X. Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss. Braz Oral Res 2017; 31:e63. [PMID: 28832712 DOI: 10.1590/1807-3107bor-2017.vol31.0063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to investigate the roles of different Toll-like receptor (TLR) signaling in Porphyromonas gingivalis (P. gingivalis)-induced and ligature-induced experimental periodontal bone resorption in mice. Wild-type (WT), TLR2 knockout (KO), TLR4KO, and TLR2&4 KO mice with C57/BL6 background were divided into three groups: control, P. gingivalis infection, and ligation. Live P. gingivalis or silk ligatures were placed in the sulcus around maxillary second molars over a 2-week period. Images were captured by digital stereomicroscopy, and the bone resorption area was measured with ImageJ software. The protein expression level of gingival RANKL was measured by ELISA. The gingival mRNA levels of RANKL, IL-1β, TNF-α, and IL-10 were detected by RT-qPCR. The results showed that P. gingivalis induced significant periodontal bone resorption in WT mice and TLR2 KO mice but not in TLR4 KO mice or TLR2&4 KO mice. For all four types of mice, ligation induced significant bone loss compared with that in control groups, and this bone loss was significantly higher than that in the P. gingivalis infection group. RANKL protein expression was significantly increased in the ligation group compared with that in the control group for all four types of mice, and in the P. gingivalis infection group of WT, TLR2 KO, and TLR4 KO mice. Expression patterns of RANKL, IL-1β, TNF-α, and IL-10 mRNA were different in the P. gingivalis infection group and the ligation group in different types of mice. In summary, P. gingivalis-induced periodontal bone resorption is TLR4-dependent, whereas ligation-induced periodontal bone resorption is neither TLR2- nor TLR4-dependent.
Collapse
Affiliation(s)
- Mei Lin
- Beijing ChaoYang Hospital affiliated with Capital Medical University, Department of Stomatology, Beijing, China
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Yuhua Wang
- Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, Department of Prosthodontics, Shanghai Key Laboratory, Shanghai, China
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Zuomin Wang
- Beijing ChaoYang Hospital affiliated with Capital Medical University, Department of Stomatology, Beijing, China
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| |
Collapse
|
22
|
Ribeiro Vieira C, Laurides Ribeiro de Oliveira Lomeu F, de Castro Moreira ME, Stampini Duarte Martino H, Ribeiro Silva R. Clinical application of a cocoa and unripe banana flour beverage for overweight women with abdominal obesity: Prospective, double-blinded and randomized clinical trial. J Food Biochem 2017. [DOI: 10.1111/jfbc.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|