1
|
Adam MS, Zhuang H, Ren X, Zhang Y, Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1393550. [PMID: 38854686 PMCID: PMC11162117 DOI: 10.3389/fendo.2024.1393550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Osteoarthritis (OA) is an intricate pathological condition that primarily affects the entire synovial joint, especially the hip, hand, and knee joints. This results in inflammation in the synovium and osteochondral injuries, ultimately causing functional limitations and joint dysfunction. The key mechanism responsible for maintaining articular cartilage function is chondrocyte metabolism, which involves energy generation through glycolysis, oxidative phosphorylation, and other metabolic pathways. Some studies have shown that chondrocytes in OA exhibit increased glycolytic activity, leading to elevated lactate production and decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display alterations in mitochondrial activity, such as decreased ATP generation and increased oxidative stress, which can contribute to cartilage deterioration. Chondrocyte metabolism also involves anabolic processes for extracellular matrix substrate production and energy generation. During OA, chondrocytes undergo considerable metabolic changes in different aspects, leading to articular cartilage homeostasis deterioration. Numerous studies have been carried out to provide tangible therapies for OA by using various models in vivo and in vitro targeting chondrocyte metabolism, although there are still certain limitations. With growing evidence indicating the essential role of chondrocyte metabolism in disease etiology, this literature review explores the metabolic characteristics and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To provide insight into the complex metabolic reprogramming crucial in chondrocytes during OA progression, we investigate the dynamic interaction between metabolic pathways, such as glycolysis, lipid metabolism, and mitochondrial function. In addition, this review highlights prospective future research directions for novel approaches to diagnosis and treatment. Adopting a multifaceted strategy, our review aims to offer a comprehensive understanding of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of identifying therapeutic targets capable of modulating chondrocyte metabolism for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Fernández-Moreno M, Hermida-Gómez T, Larkins N, Reynolds A, Blanco FJ. Anti-Inflammatory Activity of APPA (Apocynin and Paeonol) in Human Articular Chondrocytes. Pharmaceuticals (Basel) 2024; 17:118. [PMID: 38256951 PMCID: PMC10818286 DOI: 10.3390/ph17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease leading to cartilage loss and reduction in the joint space which results in pain. The current pharmacological treatment of OA is inadequate and pharmacological interventions focus on symptom management. APPA, a combination of apocynin (AP) and paeonol (PA), is a potential drug for treating OA. The aim of this study was to analyze the effects of APPA on the modulation of the inflammatory response in chondrocytes. Samples were incubated with IL-1β and APPA, and their responses to proinflammatory cytokines, catabolic mediators and redox responses were then measured. The effect of APPA on mitogenesis was also evaluated. Results show that APPA attenuated the expression of IL-8, TNF-α, MMP-3, MMP-13, SOD-2 and iNOS, resulting in the protection of human articular cartilage. APPA decreased PGC-1α gene expression induced by IL-1β. APPA did not modulate the gene expression of Mfn2, Sirt-1 or Sirt-3. The overall findings indicate that APPA may be an effective treatment for OA by targeting several of the pathways involved in OA pathogenesis.
Collapse
Affiliation(s)
- Mercedes Fernández-Moreno
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade de A Coruña (UDC), 15071 A Coruña, Spain;
- Grupo de Investigación en Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química y Biología (CICA), Universidade de A Coruña (UDC), Campus de Elviña, 15071 A Coruña, Spain
| | - Tamara Hermida-Gómez
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade de A Coruña (UDC), 15071 A Coruña, Spain;
- Grupo de Investigación en Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química y Biología (CICA), Universidade de A Coruña (UDC), Campus de Elviña, 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red, Bioingenieria, Biomatereial y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Nicholas Larkins
- AKL Therapeutics Ltd., Stevenage Bioscience, Gunnels Wood Rd, Stevenage SG1 2FX, UK; (N.L.); (A.R.)
| | - Alan Reynolds
- AKL Therapeutics Ltd., Stevenage Bioscience, Gunnels Wood Rd, Stevenage SG1 2FX, UK; (N.L.); (A.R.)
| | - Francisco J. Blanco
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade de A Coruña (UDC), 15071 A Coruña, Spain;
- Grupo de Investigación en Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Centro Interdisciplinar de Química y Biología (CICA), INIBIC-Sergas, Universidade de A Coruña (UDC), Campus de Oza, 15008 A Coruña, Spain
| |
Collapse
|
3
|
Zhao K, Han D, He SR, Wu LY, Liu WY, Zhong ZM. N-acetyl-L-cysteine attenuates oxidative stress-induced bone marrow endothelial cells apoptosis by inhibiting BAX/caspase 3 pathway. Biochem Biophys Res Commun 2023; 656:115-121. [PMID: 36963348 DOI: 10.1016/j.bbrc.2023.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Bone marrow endothelial cells (BMECs) play a crucial role in the maintenance of bone homeostasis. The decline in BMECs is associated with abnormal bone development and loss. At present, the mechanism of age-related oxidative stress enhancement in BMEC dysfunction remains unclear. Our experiment explored injury caused by oxidative stress enhancement in BMECs both in vivo and in vitro. The BMECs, indicators of oxidative stress, bone mass, and apoptosis-related proteins were analyzed in different age groups. We also evaluated the ability of N-Acetyl-L-cysteine (NAC) attenuate oxidative stress injury in BMECs. NAC treatment attenuated reactive oxygen species (ROS) overgeneration and apoptosis in BMECs in vitro and alleviated the loss of BMECs and bone mass in vivo. In conclusion, this study could improve our understanding of the mechanism of oxidative stress-induced BMECs injury and whether NAC has therapeutic potential in senile osteoporosis.
Collapse
Affiliation(s)
- Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Si-Rui He
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Long-Yan Wu
- Ganzhou People's Hospital, Ganzhou, PR China
| | - Wu-Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China.
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
4
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:ijms24065364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| |
Collapse
|
5
|
Chen G, Zhang J, Sheng M, Zhang S, Wu Q, Liu L, Yu B, Kou J. Serum of limb remote ischemic postconditioning inhibits fMLP-triggered activation and reactive oxygen species releasing of rat neutrophils. Redox Rep 2021; 26:176-183. [PMID: 34663202 PMCID: PMC8530488 DOI: 10.1080/13510002.2021.1982515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives The study explores the protective role of the peripheral serum of limb remote ischemic postconditioning (LRIP) in reducing the reactive oxygen species (ROS) levels and neutrophil activation, which are responsible for the deleterious reperfusion injury. Methods LRIP was induced in Sprague–Dawley rats by three cycles of 5 min occlusion /5 min reperfusion on the left hind limb. The blood samples were collected before LRIP or 0 and 1 h after LRIP (named SerumSham, SerumLRIP0, SerumLRIP1, respectively). The effects of LRIP serum on ROS level and neutrophils activation were determined. The expression of MyD88-TRAF6-MAPKs and PI3K/AKT pathways in neutrophils were examined. Results When compared with SerumSham, SerumLRIP0 and SerumLRIP1 significantly reduced the ROS released from neutrophils activated by fMLP. Meanwhile, the mRNA expression levels of NADPH oxidase subunit p22phox and multiple ROS-producing related key proteins, such as NADPH oxidase subunit p47phox ser 304, ser 345. MyD88, p-ERK, p-JNK and p-P38 expression of neutrophils were downregulated by SerumLRIP0 and SerumLRIP1. SerumLRIP1 also downregulated p47phox mRNA expression and tumor necrosis factor receptor-associated factor 6 (TRAF6) protein expression. Conclusion LRIP serum protects against ROS level and neutrophils activation involving the MyD88-TRAF6-MAPKs. This finding provides new insight into the understanding of LRIP mechanisms.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiangwei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Sanli Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Boyang Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Xun T, Lin Z, Wang X, Zhan X, Feng H, Gan D, Yang X. Advanced oxidation protein products downregulate CYP1A2 and CYP3A4 expression and activity via the NF-κB-mediated signaling pathway in vitro and in vivo. J Transl Med 2021; 101:1197-1209. [PMID: 34031539 PMCID: PMC8367815 DOI: 10.1038/s41374-021-00610-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Uremic toxin accumulation is one possible reason for alterations in hepatic drug metabolism in patients with chronic kidney disease (CKD). However, the types of uremic toxins and underlying mechanisms are poorly understood. In this study, we report the role of advanced oxidation protein products (AOPPs), a modified protein uremic toxin, in the downregulation of cytochromes P450 1A2 (CYP1A2) and P450 3A4 (CYP3A4) expression levels and activities. We found that AOPP accumulation in plasma in a rat CKD model was associated with decreased protein levels of CYP1A2 and CYP3A4. CYP1A2 and CYP3A4 metabolites (acetaminophen and 6β-hydroxytestosterone, respectively,) in liver microsomes were also significantly decreased. In human hepatocytes, AOPPs significantly decreased CYP1A2 and CYP3A4 protein levels in a dose- and time-dependent manner and downregulated their activities; however, bovine serum albumin (BSA), a synthetic precursor of AOPPs, had no effect on these parameters. The effect of AOPPs was associated with upregulation of p-IKKα/β, p-IκBα, p-NF-κB, and inflammatory cytokines protein levels and increases in p-IKKα/β/IKKα, p-IκBα/IκBα, and p-NF-κB/NF-κB phosphorylation ratios. Further, NF-kB pathway inhibitors BAY-117082 and PDTC abolished the downregulatory effects of AOPPs. These findings suggest that AOPPs downregulate CYP1A2 and CYP3A4 expression and activities by increasing inflammatory cytokine production and stimulating NF-κB-mediated signaling. Protein uremic toxins, such as AOPPs, may modify the nonrenal clearance of drugs in patients with CKD by influencing metabolic enzymes.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xia Zhan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Cabrera Cesar E, Lopez-Lopez L, Lara E, Hidalgo-San Juan MV, Parrado Romero C, Palencia JLRS, Martín-Montañez E, Garcia-Fernandez M. Serum Biomarkers in Differential Diagnosis of Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Disease. J Clin Med 2021; 10:jcm10143167. [PMID: 34300333 PMCID: PMC8307287 DOI: 10.3390/jcm10143167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction: The goal of this study is to determine whether Advanced glycosylated end-products (AGE), Advanced oxidation protein products (AOPP) and Matrix metalloproteinase 7 (MMP7) could be used as differential biomarkers for idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). Method: Seventy-three patients were enrolled: 29 with IPF, 14 with CTD-ILD, and 30 healthy controls. The study included a single visit by participants. A blood sample was drawn and serum was analysed for AGE using spectrofluorimetry, AOPP by spectrophotometry, and MMP7 using sandwich-type enzyme-linked immunosorbent assay. Results: AGE, AOPP and MMP7 serum levels were significantly higher in both IPF and CTD-ILD patients versus healthy controls; and AGE was also significantly elevated in CTD-ILD compared to the IPF group. AGE plasma levels clearly distinguished CTD-ILD patients from healthy participants (AUC = 0.95; 95% IC 0.86–1), whereas in IPF patients, the distinction was moderate (AUC = 0.78; 95% IC 0.60–0.97). Conclusion: In summary, our results provide support for the potential value of serum AGE, AOPP and MMP7 concentrations as diagnostic biomarkers in IPF and CTD-ILD to differentiate between ILD patients and healthy controls. Furthermore, this study provides evidence, for the first time, for the possible use of AGE as a differential diagnostic biomarker to distinguish between IPF and CTD-ILD. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF and CTD-ILD diagnosis needs to be considered and further explored. Multicentre studies are necessary to understand the role of AGE in differential diagnosis.
Collapse
Affiliation(s)
- Eva Cabrera Cesar
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
- Correspondence: ; Tel.: +34-646-905-201
| | - Lidia Lopez-Lopez
- Respiratory Service, Universitary Virgen de la Victoria Hospital, 29010 Málaga, Spain; (L.L.-L.); (M.V.H.-S.J.)
| | - Estrella Lara
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | | | - Concepcion Parrado Romero
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| | - Jose Luis Royo Sánchez Palencia
- Department of Biochemistry, Biomedical Research Institute of Málaga, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
| | - Elisa Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain;
| | - Maria Garcia-Fernandez
- Department of Physiology and Human Histology, Faculty of Medicine, University of Málaga, Biomedical Research Institute of Málaga, 29010 Málaga, Spain; (E.L.); (C.P.R.); (M.G.-F.)
| |
Collapse
|
8
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Qing-Xian L, Lin-Long W, Yi-Zhong W, Liang L, Hui H, Liao-Bin C, Hui W. Programming changes in GLUT1 mediated the accumulation of AGEs and matrix degradation in the articular cartilage of female adult rats after prenatal caffeine exposure. Pharmacol Res 2019; 151:104555. [PMID: 31765739 DOI: 10.1016/j.phrs.2019.104555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal glucose metabolism. Our laboratory previously reported that prenatal caffeine exposure (PCE) can induce intrauterine maternal glucocorticoid (GC) overexposure in IUGR offspring and increase susceptibility to osteoarthritis after birth. In the present study, we demonstrated the essential role of glucose transporter 1 (GLUT1) programming changes in the increased matrix degradation of articular cartilage and susceptibility to osteoarthritis in female PCE adult offspring. In vivo, we found that PCE decreased the matrix content but did not significantly change the expression of matrix degradation-related genes in the articular cartilage of female fetal rats. The decreased expression of IGF1 and GLUT1 and the content of advanced-glycation-end-products (AGEs) were also detected. At different postnatal stages (2, 6, and 12 weeks), the cartilage matrix content decreased while the degradation-related genes expression increased in the PCE group. Meanwhile, the expression of IGF1 and GLUT1 and AGEs content in the local cartilage increased. In vitro, the expression levels of IGF1 and GLUT1 were inhibited by corticosterone but remained unchanged under caffeine treatment. Exogenous IGF1 can reverse the corticosterone-induced decrease in GLUT1 expression and promote AGEs production, while mifepristone (a glucocorticoid receptor inhibitor) reversed the corticosterone-induced low expression of IGF1 and GLUT1. Exogenous AGEs can increase the expression of inflammatory factors (IL-6 and TNF-α) and degradation-related genes, and decrease the matrix synthesis-related genes expression in chondrocyte. In conclusion, the GC-IGF1-GLUT1 axis mediated intrauterine dysplasia of articular cartilage, increased accumulation of AGEs and matrix degradation after birth in PCE female offspring, thereby increasing their susceptibility to osteoarthritis in adulthood.
Collapse
Affiliation(s)
- Li Qing-Xian
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wang Lin-Long
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Wang Yi-Zhong
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liu Liang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han Hui
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Liao-Bin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Wang Hui
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Liao CR, Wang SN, Zhu SY, Wang YQ, Li ZZ, Liu ZY, Jiang WS, Chen JT, Wu Q. Advanced oxidation protein products increase TNF-α and IL-1β expression in chondrocytes via NADPH oxidase 4 and accelerate cartilage degeneration in osteoarthritis progression. Redox Biol 2019; 28:101306. [PMID: 31539804 PMCID: PMC6812020 DOI: 10.1016/j.redox.2019.101306] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1β and tumor necrosis factor (TNF)-α, in particular, control the degeneration of articular cartilage, making them prime targets for osteoarthritis (OA) therapeutic strategies. Advanced oxidation protein products (AOPPs) are prevalent in numerous diseases. Our previous work demonstrates that intra-articular injections of AOPPs accelerate regression of cartilage in OA models. Whether AOPPs exist in the course of OA and their effects on TNF-α and IL-1β expression in chondrocytes are still unclear. This study confirmed that AOPPs levels in human synovial fluid were positively associated with severity of OA. We also found AOPPs deposition in articular cartilage in anterior cruciate ligament transection (ACLT) induced rodent OA models. AOPPs increased expression of TNF-α and IL-1β in chondrocytes in vitro, which was inhibited by pre-treatment with SB202190 (p38-MAPK inhibitor) or apocynin (NADPH oxidase inhibitor) or NOX4 knockdown by siRNAs. Subsequently, we further verified in vivo that exogenous injection of AOPPs in OA mice up-regulated expression of TNF-α and IL-1β in cartilage, which was blocked by treatment with apocynin. In parallel, apocynin attenuated articular cartilage degeneration resulting in substantially lower OARSI scores. Specifically, apocynin reduced NOX4, p-P38, TNF-α and IL-1β and increased collagen II and glycosaminoglycan (GAG). This study demonstrated that AOPPs increased expression of TNF-α and IL-1β in chondrocytes via the NADPH oxidase4-dependent and p38-MAPK mediated pathway, and accelerated cartilage degeneration in OA progression. These findings suggest an endogenous pathogenic role of AOPPs in OA progression. Targeting AOPPs-triggered cellular mechanisms might be a promising therapeutic option for patients with OA. AOPPs present in OA joint. AOPPs increased TNF-α and IL-1β expression in chondrocytes and accelerates progression of OA. NADPH oxidase inhibitor decreased TNF-α and IL-1β expression and attenuates progression of OA.
Collapse
Affiliation(s)
- Cong-Rui Liao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng-Nan Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Yuan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Qing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zong-Ze Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Yuan Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang-Sheng Jiang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Sun T, Chen Q, Zhu SY, Wu Q, Liao CR, Wang Z, Wu XH, Wu HT, Chen JT. Hydroxytyrosol promotes autophagy by regulating SIRT1 against advanced oxidation protein product‑induced NADPH oxidase and inflammatory response. Int J Mol Med 2019; 44:1531-1540. [PMID: 31432093 DOI: 10.3892/ijmm.2019.4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/08/2019] [Indexed: 11/05/2022] Open
Abstract
Advanced oxidation protein products (AOPPs) can trigger NADPH oxidase (NOX) and lead to the production of reactive oxygen species (ROS) in the pathophysiology of rheumatoid arthritis (RA). Hydroxytyrosol (HT) is a phenolic composite in olive oil that has antioxidant and anti‑inflammatory effects and enhances autophagy. Early research has revealed that HT can activate the silent information regulator 1 (SIRT1) pathway to induce autophagy and alleviate the cartilage inflammatory response caused by H2O2. However, whether HT can attenuate AOPP‑induced NOX and inflammatory responses remains to be elucidated. The present study aimed to investigate how HT can alleviate the damage caused by AOPPs. In cell experiments, chondrocytes were pre‑stimulated with HT and then exposed to AOPPs. First, it was found that HT promoted autophagy through the SIRT1 pathway, increased the expression of autophagy‑related proteins including microtubule‑associated protein 1 light chain 3, autophagy related (ATG)5 and ATG7, and decreased the expression of P62. Furthermore, HT reduced the expression of NOX, which was affected by AOPPs in chondrocytes through the SIRT1 pathway. Finally, the expression of inflammatory cytokines caused by AOPPs was downregulated following HT treatment. In conclusion, it was found that HT reduced the expression of NOX and inhibited the inflammatory response caused by AOPPs in chondrocytes through the SIRT1 pathway.
Collapse
Affiliation(s)
- Tian Sun
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Yuan Zhu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cong-Rui Liao
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zheng Wang
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao-Hu Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hang-Tian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian-Ting Chen
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
12
|
Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 2019; 132:90-100. [PMID: 30236789 DOI: 10.1016/j.freeradbiomed.2018.09.025] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Orthopaedics & Trauma, 'KAT' General Hospital, Kifissia, 14561 Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece.
| |
Collapse
|
13
|
Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol 2018; 58:136-144. [PMID: 29587202 DOI: 10.1016/j.intimp.2018.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Tofacitinib, a small molecule JAK inhibitor, has been widely used to reduce inflammation and inhibit progression of bone destruction in rheumatoid arthritis. STAT3, a downstream signaling molecule of JAK, plays a key role in the activation of signaling in response to inflammatory cytokines. Thus, targeting STAT3 may be an inspiring strategy for treating osteoclast-related diseases such as rheumatoid arthritis. In this study, we first investigated the effects of Stattic, a STAT3 inhibitor, on receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. Stattic inhibited osteoclast differentiation and bone resorption in RANKL-induced RAW264.7 cells in a dose-dependent manner. Stattic also suppressed RANKL-induced upregulation of osteoclast-related genes tartrate-resistant acid phosphatase, matrix metalloproteinase 9, cathepsin K, RANK, tumor necrosis factor receptor-associated factor 6, and osteoclast-associated receptor in RAW264.7 cells. Moreover, Stattic exhibited an inhibitory effect on cell proliferation and cell cycle progression at higher dosages. At the molecular level, Stattic inhibited RANKL-induced activation of STAT3 and NF-κB pathways, without significantly affecting MAPK signaling. In addition, Stattic inhibited RANKL-induced expression of osteoclast-related transcription factors c-Fos and NFATc1. Importantly, Stattic also prevented bone loss caused by ovariectomy. Together, our data confirm that Stattic restricts osteoclastogenesis and bone loss by disturbing RANKL-induced STAT3 and NF-κB signaling. Thus, Stattic represents a novel type of osteoclast inhibitor that could be useful for conditions such as osteoporosis and rheumatoid arthritis.
Collapse
|
14
|
Yang X, Chen W, Zhao X, Chen L, Li W, Ran J, Wu L. Pyruvate Kinase M2 Modulates the Glycolysis of Chondrocyte and Extracellular Matrix in Osteoarthritis. DNA Cell Biol 2018; 37:271-277. [PMID: 29356574 DOI: 10.1089/dna.2017.4048] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) has been wildly verified to modulate glycolysis in tumor cells. However, the role of PKM2 on the glycolysis of osteoarthritis (OA) chondrocytes is still unclear. In present study, we investigate the function of PKM2 on OA chondrocyte glycolysis and the collagen matrix generation in vitro. Results showed that PKM2 was upregulated in OA chondrocytes compared with healthy control chondrocytes. In OA chondrocytes, ATP expression was lower compared with healthy control chondrocytes. Loss-of-function experiment showed that PKM2 knockdown mediated by lentivirus transfection could significantly suppress the glucose consumption and lactate secretion levels and decrease glucose transporter-1 (Glut-1), lactate dehydrogenase A (LDHA), and hypoxia inducible factor 1-alpha (HIF-1α), indicating the inhibition of PKM2 knockdown on glycolysis. Moreover, Cell Counting Kit-8 (CCK-8), flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay showed that PKM2 knockdown inhibited OA chondrocyte proliferation and promoted the apoptosis. Western blot and immunocytochemical staining showed that PKM2 knockdown downregulated the expression levels of COL2A1 and SOX-9. In summary, our results conclude that PKM2 modulates the glycolysis and extracellular matrix generation, providing the vital role of PKM2 on OA pathogenesis and a novel therapeutic target for OA.
Collapse
Affiliation(s)
- Xiaobo Yang
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weiping Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiang Zhao
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Linwei Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wanli Li
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jisheng Ran
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lidong Wu
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, Pan X, Lv L, Gao Y, Wu G. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget 2017; 8:111522-111534. [PMID: 29340072 PMCID: PMC5762340 DOI: 10.18632/oncotarget.22869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 01/01/2023] Open
Abstract
Our previous study demonstrated that hyperbaric oxygen (HBO) preconditioning protected against myocardial ischemia reperfusion injury (MIRI) and improved myocardial infarction. However, HBO’s effect on MIRI-induced inflammation and autophagy remains unclear. In this study, we investigate the potential impact and underlying mechanism of HBO preconditioning on an MIRI-induced inflammatory response and autophagy using a ligation of the left anterior descending (LAD) coronary artery rat model. Our results showed that HBO restored myocardial enzyme levels and decreased the apoptosis of cardiomyocytes, which were induced by MIRI. Moreover, HBO significantly suppressed MIRI-induced inflammatory cytokines. This effect was associated with the inhibition of the TLR4-nuclear factor kappa-B (NF-κB) pathway. Interestingly, lower expression levels of microtubule-associated protein 1 light chain 3B (LC3B) and Beclin-1 were observed in the HBO-treatment group. Furthermore, we observed that HBO reduced excessive autophagy by activating the mammalian target of the rapamycin (mTOR) pathway, as evidenced by higher expression levels of threonine protein kinase (Akt) and phosphorylated-mTOR. In conclusion, HBO protected cardiomocytes during MIRI by attenuating inflammation and autophagy. Our results provide a new mechanistic insight into the cardioprotective role of HBO against MIRI.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Yanling Dong
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Xiaoming Teng
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, Guangxi 530022, P. R. China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Liwen Lv
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| | - Ying Gao
- Department of Biology and Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Guangwei Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P. R. China
| |
Collapse
|
16
|
Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway. PLoS One 2017; 12:e0172006. [PMID: 28222157 PMCID: PMC5319750 DOI: 10.1371/journal.pone.0172006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate whether dexmedetomidine (DEX) preconditioning could alleviate the inflammation caused by myocardial ischemia/reperfusion (I/R) injury by reducing HMGB1-TLR4-MyD88-NF-кB signaling. Methods Seventy rats were randomly assigned into five groups: sham group, myocardial I/R group (I/R), DEX+I/R group (DEX), DEX+yohimbine+I/R group (DEX/YOH), and yohimbine+I/R group (YOH). Animals were subjected to 30 min of ischemia induced by occluding the left anterior descending artery followed by 120 min of reperfusion. Myocardial infarct size and histological scores were evaluated. The levels of IL-6 and TNF-α in serum and myocardium were quantified by enzyme-linked immunosorbent assay, and expression of HMGB1, TLR4, MyD88, IκB and NF-κB in the myocardial I/R area were determined with Western blot and immunocytochemistry. Results Myocardial infarct sizes, histological scores, levels of circulating and myocardial IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly increased in the I/R group compared with the sham group (P<0.01). DEX preconditioning significantly reduced the myocardial infarct size and histological scores (P<0.01 vs. I/R group). Similarly, the serum and myocardial levels of IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly reduced in the DEX group (P<0.01 vs. I/R group). These effects were partly reversed by yohimbine, a selective α2-adrenergic receptor antagonist, while yohimbine alone had no significant effect on any of the above indicators. Conclusion DEX preconditioning reduces myocardial I/R injury in part by attenuating inflammation, which may be attributed to the downregulation of the HMGB1-TLR4-MyD88-NF-кB signaling pathway mediated by the α2-adrenergic receptor activation.
Collapse
|
17
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|