1
|
Skonta A, Bellou MG, Matikas TE, Stamatis H. Colorimetric Glucose Biosensor Based on Chitosan Films and Its Application for Glucose Detection in Beverages Using a Smartphone Application. BIOSENSORS 2024; 14:299. [PMID: 38920603 PMCID: PMC11201573 DOI: 10.3390/bios14060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Nowadays, biosensors are gaining increasing interest in foods' and beverages' quality control, owing to their economic production, enhanced sensitivity, specificity, and faster analysis. In particular, colorimetric biosensors can be combined with color recognition applications on smartphones for the detection of analytes, rendering the whole procedure more applicable in everyday life. Herein, chitosan (CS) films were prepared with the deep eutectic solvent (DES) choline chloride/urea/glycerol (ChCl:U:Gly). Glucose oxidase (GOx), a widely utilized enzyme in quality control, was immobilized within CS films through glutaraldehyde (GA), leading to the formation of CS/GOx films. The optimized GOx concentration and DES content were determined for the films. Moreover, the effect of the pH and temperature of the glucose oxidation reaction on the enzymatic activity of GOx was studied. The structure, stability, and specificity of the CS/GOx films as well as the Km values of free and immobilized GOx were also determined. Finally, the analytical performance of the films was studied by using both a spectrophotometer and a color recognition application on a smartphone. The results demonstrated that the films were highly accurate, specific to glucose, and stable when stored at 4 °C for 4 weeks and when reused 10 times, without evident activity loss. Furthermore, the films displayed a good linear response range (0.1-0.8 mM) and a good limit of detection (LOD, 33 μM), thus being appropriate for the estimation of glucose concentration in real samples through a smartphone application.
Collapse
Affiliation(s)
- Anastasia Skonta
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Myrto G. Bellou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Theodore E. Matikas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| |
Collapse
|
2
|
Xu L, Abd El-Aty AM, Zhao J, Lei X, Zhang X, Zhao Y, Cui X, She Y, Jin F, Wang J, Jin M, Hammock BD. Obtaining a Monoclonal Antibody against a Novel Prometryn-Like Hapten and Characterization of Its Selectivity for Triazine Herbicides. BIOSENSORS 2022; 13:22. [PMID: 36671858 PMCID: PMC9855386 DOI: 10.3390/bios13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, a previously unreported 3-((4-(isopropylamino)-6-(methylthio)-1,3,5-triazin-2-yl) amino) butyric acid hapten was designed and synthesized. This maximized the exposure of the antigen-determinant isopropyl of prometryn to the immune system in animals to induce the production of anticipated highly specific anti-prometryn antibodies. The hapten has a molecular weight of 285.37 Da. The compound was confirmed by nuclear magnetic resonance hydrogen spectroscopy (1H NMR), nuclear magnetic resonance carbon spectroscopy (13C NMR), and high-resolution mass spectrometry (HRMS). By using the active ester approach, immunogens and coated antigens were created. Bovine serum albumin (BSA) was used as an immunogen, along with the successfully produced hapten, to immunize mice. The IC50 value of mouse monoclonal anti-prometryn antibody (mAb) 7D4 (the quantity of analyte that generated 50% prometryn inhibition) was 3.9 ng/mL. The anti-prometryn mAb was of the IgG1 subclass. The IC20 (80% binding level (B/B0) of prometryn)-IC80 (20% binding level (B/B0) of prometryn) range of the anti-prometryn monoclonal antibody standard curve working range was 0.9-18.1 ng/mL. The prepared mAb has good characteristics because it can specifically recognize prometryn, and the cross-reaction rates for ametryn, desmetryn, and terbumeton were 34.77%, 18.09%, and 7.64%, respectively. The cross-reaction rate with the other seven triazines was less than 1%. The hapten structure proposed can serve as an additional tool for modulating selectivity in detecting triazines.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuyuan Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Design and Characterization of a Novel Hapten and Preparation of Monoclonal Antibody for Detecting Atrazine. Foods 2022; 11:foods11121726. [PMID: 35741925 PMCID: PMC9223028 DOI: 10.3390/foods11121726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
This study provides the first design and synthetic protocol for preparing highly sensitive and specific atrazine (ATR) monoclonal antibodies (mAbs). In this work, a previously unreported hapten, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, was designed and synthesized, which maximally exposed the characteristic amino group ATR to an animal immune system to induce the expected antibody. The molecular weight of the ATR hapten was 259.69 Da, and its purity was 97.8%. The properties of the anti-ATR mAb were systematically characterized. One 9F5 mAb, which can detect ATR, was obtained with an IC50 value (the concentration of analyte that produced 50% inhibition of ATR) of 1.678 µg/L for ATR. The molecular weight for the purified 9F5 mAb was approximately 52 kDa for the heavy chain and 15 kDa for the light chain. The anti-ATR mAb prepared in this study was the IgG1 type. The working range of the standard curve (IC20 (the concentration of analyte that produced 20% inhibition of ATR)-IC80 (the concentration of analyte that produced 80% inhibition of ATR)) was 0.384 to 11.565 µg/L. The prepared anti-ATR mAb had high specificity, sensitivity, and affinity with low cross-reactivity. The prepared anti-ATR mAb could provide the core raw material for establishing an ATR immunoassay.
Collapse
|
4
|
Sun T, Xu Z, Yuan S, Liu X, Chen Z, Han Z, Liu W, Fan L, Yang H, Qie Z, Ning B. A gold nanoparticle-based lateral flow immunoassay for atrazine point-of-care detection using a handhold scanning device as reader. Mikrochim Acta 2022; 189:153. [PMID: 35322310 DOI: 10.1007/s00604-021-05146-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/11/2021] [Indexed: 10/18/2022]
Abstract
A method is described to achieve accurate quantitative detection of atrazine (ATZ) in maize by using lateral flow strips based on gold nanoparticles (GNPs) and a handheld scanning reader. GNPs of 15 nm in diameter were applied as label, and a lateral flow immune assay strip was prepared. The linear range was 5.01-95.86 ng mL-1 with a detection limit of 4.92 ng mL-1 in phosphate buffer, 4 times better than the readout by the naked eye. ATZ-spiked corn samples were also analysed. The accuracy of results of spiked samples was confirmed by ELISA and liquid chromatography-tandem mass spectrometry (HPLC), which proved the reliability of the proposed method. A handhold device with an optical scanning system was designed for on-site quantitative detection. Combined with the pretreatment, the assay could be completed in less than 20 min.
Collapse
Affiliation(s)
- Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zehua Xu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuai Yuan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zongfen Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhenyu Han
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Wentao Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Han Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiwei Qie
- 96601 Army Hospital of PLA, Beijing, 110035, China.
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
5
|
Yang MH, Wang YD, Qin JA, Wu L, Wang BM, Eremin S, Yang SH. Enzyme-linked immunosorbent assay and immunochromatographic strip for rapid detection of atrazine in three medicinal herbal roots. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_76_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Ghoshdastidar S, Gangula A, Kainth J, Saranathan S, Elangovan A, Afrasiabi Z, Hainsworth DP, Upendran A, Kannan R. Plate-Adherent Nanosubstrate for Improved ELISA of Small Molecules: A Proof of Concept Study. Anal Chem 2020; 92:10952-10956. [DOI: 10.1021/acs.analchem.0c01441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | - Zahra Afrasiabi
- Soka University of America, Aliso Viejo, California 92656, United States
| | | | | | | |
Collapse
|
7
|
Modification of chlorosulfonated polystyrene substrates for bioanalytical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110912. [DOI: 10.1016/j.msec.2020.110912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
8
|
Mesoporous Pd@Pt nanoparticle-linked immunosorbent assay for detection of atrazine. Anal Chim Acta 2020; 1116:36-44. [DOI: 10.1016/j.aca.2020.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 11/19/2022]
|
9
|
An integrated strategy for rapid on-site screening and determination of prometryn residues in herbs. Anal Bioanal Chem 2020; 412:621-633. [PMID: 31907590 DOI: 10.1007/s00216-019-02224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
We produced a prometryn-specific monoclonal antibody and propose a strategy for convenient on-site detection of prometryn residues in herbs for the first time. This strategy has perfect applicability in a complex herbal medicine matrix. The strategy combines a semiquantitative immunochromatographic strip assay with a heterologous indirect competitive ELISA. When there was no matrix interference, the ELISA had a half-maximal inhibitory concentration of 2.6 ng·mL-1 and a limit of detection of 0.2 ng·mL-1. The immunochromatographic strip assay can be completed within 5 min with a visual limit of detection of 1 ng·mL-1. Although the sample matrix had different effects on the sensitivity of the antibody, excellent repeatability and accuracy were achieved. The method was successfully applied for the screening and determination of prometryn residue in multiple complex herb samples for the first time, and the results were in good agreement with those obtained by liquid chromatography-tandem mass spectrometry. The proposed strategy is rapid, of high-throughput, and of low cost, and may be a promising choice for on-site detection of prometryn in different kinds of herbs. Graphical abstract.
Collapse
|
10
|
Sheng W, Shi Y, Ma J, Wang L, Zhang B, Chang Q, Duan W, Wang S. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels. Mikrochim Acta 2019; 186:564. [DOI: 10.1007/s00604-019-3667-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/06/2019] [Indexed: 01/04/2023]
|
11
|
Sai N, Sun Z, Wu Y, Huang G. Antibody recognition by a novel microgel photonic crystal. Bioorg Chem 2018; 84:389-393. [PMID: 30551064 DOI: 10.1016/j.bioorg.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
In this study, a easy-to-prepare biosensor for the sensitive detection of the antibody (Ab) protein was developed using a novel microgel photonic crystal (MPC). The MPC was fabricated by the spin-coated self-assembly method with the monodisperse Ab-sensitive poly (methyl methacrylate-acrylamide-glutaraldehyde-hapten) (P(MMA-AM-GA-HP)) microgels. Morphology characterization showed that the P(MMA-AM-GA-HP) microgels possessed round shapes and the large specific surface area, and the formed MPC had a highly ordered three dimensional (3D) periodically-ordered structure with the desired structural color. The Ab-response event of the P(MMA-AM-GA-HP) microgels can be directly transferred into a readable optical signal through a change in Bragg reflection of the periodic structure of the MPC. With the sensory system, the sensitive and selective detection of Ab was achieved without labeling techniques and expensive instruments. Therefore, this easy and sensitive detection system has great potential for next generation of the bioassay platform for clinical diagnosis and other applications.
Collapse
Affiliation(s)
- Na Sai
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, China.
| | - Zhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, China
| | - Yuntang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, China
| | - Guowei Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, China
| |
Collapse
|
12
|
Stavra E, Petrou PS, Koukouvinos G, Kiritsis C, Pirmettis I, Papadopoulos M, Goustouridis D, Economou A, Misiakos K, Raptis I, Kakabakos SE. Simultaneous determination of paraquat and atrazine in water samples with a white light reflectance spectroscopy biosensor. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:67-75. [PMID: 30014916 DOI: 10.1016/j.jhazmat.2018.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 05/27/2023]
Abstract
An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum due to reaction to effective biomolecular layer thickness. Dual-analyte determination is accomplished by functionalizing spatially distinct areas of the chip with protein conjugates of the two herbicides and scanning the surface with an optical reflection probe. A competitive immunoassay format was adopted, followed by reaction with secondary antibodies for signal enhancement. The sensor was highly sensitive with detection limits of 40 and 50 pg/mL for paraquat and atrazine, respectively, and the assay duration was 12 min. Recovery values ranging from 90.0 to 110% were determined for the two pesticides in spiked bottled and tap water samples, demonstrating the sensor accuracy. In addition, the sensor could be regenerated and re-used at least 20 times without significant effect on the assay characteristics. Its excellent analytical performance and short analysis time combined with the small sensor size should be helpful for fast on-site determinations of these analytes.
Collapse
Affiliation(s)
- Eleftheria Stavra
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece; Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
| | - Georgios Koukouvinos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Christos Kiritsis
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Ioannis Pirmettis
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Minas Papadopoulos
- Radiopharmaceuticals Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Dimitrios Goustouridis
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece; Electronics Department, TEI of Piraeus, 12244 Egaleo, Greece
| | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Zografou, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
| |
Collapse
|