1
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
2
|
Zheng Q, Liu R, Jiang B, Sun J, Wang T, Ruan Q. NF-κB c-Rel Is a Potential Therapeutic Target for Acute Corneal Transplant Rejection. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37962530 PMCID: PMC10653260 DOI: 10.1167/iovs.64.14.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose The purpose of this study was to determine the role of nuclear factor kappa B (NF-κB) c-Rel during acute corneal transplant rejection and whether targeting c-Rel can reduce corneal transplant rejection. Methods Allogeneic corneal transplantation was performed in wild-type and c-Rel-deficient mice. Corneal graft survival rate, opacity, neovascularization, and edema were evaluated by slit-lamp microscopy. Adeno-associated virus 6 (AAV6) expressing c-Rel-specific small hairpin RNA (AAV6-shRel) and the small-molecule compound pentoxifylline (PTXF) were used to reduce c-Rel expression. Enzyme-linked immunosorbent assay was used to determine the expression of inflammatory cytokines. c-Rel expression was determined by quantitative RT-PCR and western blot. The effect of c-Rel inhibition on corneal transplant rejection was examined using a mouse model of acute allogeneic corneal transplantation. Tear production and corneal sensitivity were measured to determine the potential toxicity of AAV6-shRel and PTXF. Results The expression of c-Rel and its inflammatory targets was increased in both mice and patients with corneal transplant rejection. Loss of c-Rel reduced corneal transplant rejection in mouse. Both AAV6-shRel and PTXF were able to downregulate the expression of c-Rel and its inflammatory targets in vitro. Treatment with AAV6-shRel or PTXF reduced corneal transplant rejection in mouse and downregulated the expression of inflammatory cytokines in peripheral blood mononuclear cells from patients with corneal transplant rejection. Treatment with AAV6-shRel or PTXF displayed no side effects on tear production or corneal sensitivity. Conclusions Increased expression of c-Rel is a risk factor for acute corneal transplant rejection, and targeting c-Rel can efficiently reduce corneal transplant rejection.
Collapse
Affiliation(s)
- Qian Zheng
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Ruiling Liu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Bian Jiang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Jijun Sun
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
3
|
Zhao W, He X, Liu R, Ruan Q. Accelerating corneal wound healing using exosome-mediated targeting of NF-κB c-Rel. Inflamm Regen 2023; 43:6. [PMID: 36703231 PMCID: PMC9881367 DOI: 10.1186/s41232-023-00260-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The integrity of the corneal epithelium is essential for the maintenance of the physiological function of the cornea. Studies have found that inflammation greatly delays corneal wound healing. NF-κB c-Rel is preferentially expressed by immune cells and promotes the expression of inflammatory cytokines. In the current study, we sought to investigate whether c-Rel could be used as a potential therapeutic target for treating a corneal injury. Our studies reveal that expressions of c-Rel and its inflammatory targets are significantly increased in the cornea of mice with corneal injury. In addition, we find that c-Rel-deficient mice exhibit accelerated corneal wound healing and reduced expression of inflammatory cytokines. Further studies show that topical treatment on the corneal surface using nano-polymers or exosomes loaded with c-Rel-specific siRNA (siRel) can effectively accelerate regular and diabetic corneal wound healing. More importantly, we find that exosomes, as carriers of siRel, showed better efficacy than nano-polymers in treating corneal injury. We further demonstrate that exosomes secreted by mesenchymal stem cells can efficiently transfer siRNA into macrophages and dendritic cells but not T cells. Taken together, these results indicate that blocking c-Rel may represent an attracting strategy for the treatment of both regular and diabetic corneal injury.
Collapse
Affiliation(s)
- Wenbo Zhao
- grid.410587.fShandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000 China ,grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| | - Xiaozhen He
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China ,grid.490473.dEye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021 China
| | - Ruiling Liu
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| | - Qingguo Ruan
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| |
Collapse
|
4
|
Bressy C, Zemani A, Goyal S, Jishkariani D, Lee CN, Chen YH. Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA. PLoS One 2022; 17:e0276905. [PMID: 36520934 PMCID: PMC9754606 DOI: 10.1371/journal.pone.0276905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
c-Rel, a member of the nuclear factor kappa B (NF-κB) family, is preferentially expressed by immune cells and is known to regulate inflammation, autoimmune diseases and cancer. However, there is a lack of therapeutic intervention to specifically inhibit c-Rel in immune cells. Recent success with Pfizer and Moderna mRNA lipid-encapsulated vaccines as well as FDA approved medicines based on siRNA prompted us to test a lipid nanoparticle-based strategy to silence c-Rel in immune cells. Specifically, we encapsulated c-Rel-targeting siRNA into distearoyl-phosphatidylserine (DSPS)-containing nanoparticles. DSPS is a saturated phospholipid that serves as the "eat-me" signal for professional phagocytes such as macrophages and neutrophils of the immune system. We demonstrated here that incorporation of DSPS in liposome nanoparticles (LNP) improved their uptake by immune cells. LNP containing high concentrations of DSPS were highly effective to transfect not only macrophages and neutrophils, but also lymphocytes, with limited toxicity to cells. However, LNP containing low concentrations of DSPS were more effective to transfect myeloid cells than lymphoid cells. Importantly, DSPS-LNP loaded with a c-Rel siRNA were highly effective to inhibit c-Rel expression in several professional phagocytes tested, which lasted for several days. Taken together, our results suggest that DSPS-LNP armed with c-Rel siRNA could be exploited to target immune cells to limit the development of inflammatory diseases or cancer caused by c-Rel upregulation. In addition, this newly developed DSPS-LNP system may be further tested to encapsulate and deliver other small molecule drugs to immune cells, especially macrophages, neutrophils, and lymphocytes for the treatment of diseases.
Collapse
Affiliation(s)
- Christian Bressy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ali Zemani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shreya Goyal
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Davit Jishkariani
- Chemical and Nanoparticle Synthesis Core (CNSC), The University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chin Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Faculty of Pharmaceutical Sciences, CAS Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
5
|
Wang X, Liu D, Cui G, Shen H. Circ_0088036 mediated progression and inflammation in fibroblast-like synoviocytes of rheumatoid arthritis by miR-1263/REL-activated NF-κB pathway. Transpl Immunol 2022; 73:101604. [PMID: 35460876 DOI: 10.1016/j.trim.2022.101604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common joint disease with abnormal development of human fibroblast-like synoviocytes (HFLS). Circular RNAs (circRNAs) have essential regulation in the disease progression, and this study was to explore the regulatory mechanism of circ_0088036 in RA. METHODS RNA expression analysis was performed through reverse transcription-quantitative polymerase chain reaction assay. Cell experiments were conducted by Cell Counting Kit-8 assay for cell viability, EdU (5-ethynyl-2'-deoxyuridine) assay for proliferation and flow cytometry for cell cycle or apoptosis. The protein detection was conducted using western blot. Enzyme-linked immunosorbent assay (ELISA) was used to examine the inflammatory cytokines. The binding identification was carried out through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay. RESULTS The level of circ_0088036 RNA was significantly upregulated in sera and in HFLS cells of RA patients. Targeted silencing of circ_0088036 restrained proliferation, cell cycle progression and inflammatory reaction through promoted the apoptosis of HFLS-RA cells via inhibiting the NF-κB pathway. The miR-1263 was identified as a target of circ_0088036. MiR-1263 was found to be down-regulated in sera and in HFLS cells of RA patients. The regulatory effects of circ_0088036 on HFLS-RA cells were attributed to inhibit the miR-1263 level. REL is a susceptibility locus for certain autoimmune diseases. MiR-1263 directly targeted REL, which was discovered to be elevated in sera and HFLS cells of RA patients, and circ_0088036 interacted with miR-1263 to affect REL expression. Functionally, overexpression of miR-1263 suppressed the development of HFLS-RA by blocking the NF-κB pathway, and this phenomenon was reversed by the upregulation of REL. CONCLUSION These findings suggested that circ_0088036/miR-1263/REL/NF-κB pathway was involved in the functional development of HFLS-RA cells, indicating a novel molecular network in RA progression in vitro.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Rheumatology and Immunology, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dan Liu
- Departement of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Guofeng Cui
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Haili Shen
- Department of Rheumatology and Immunology, Second Hospital of Lanzhou University, Lanzhou,Gansu 730030,China.
| |
Collapse
|
6
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
7
|
Tu AB, Lewis JS. Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis. Drug Deliv Transl Res 2021; 11:2371-2393. [PMID: 34414564 PMCID: PMC8376117 DOI: 10.1007/s13346-021-01038-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an extremely painful autoimmune disease characterized by chronic joint inflammation leading to the erosion of adjacent cartilage and bone. Rheumatoid arthritis pathology is primarily driven by inappropriate infiltration and activation of immune cells within the synovium of the joint. There is no cure for RA. As such, manifestation of symptoms entails lifelong management via various therapies that aim to generally dampen the immune system or impede the function of immune mediators. However, these treatment strategies lead to adverse effects such as toxicity, general immunosuppression, and increased risk of infection. In pursuit of safer and more efficacious therapies, many emerging biomaterial-based strategies are being developed to improve payload delivery, specific targeting, and dose efficacy, and to mitigate adverse reactions and toxicity. In this review, we highlight biomaterial-based approaches that are currently under investigation to circumvent the limitations of conventional RA treatments.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, 1 Shields Ave, Davis , CA, 95616, USA
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, 1 Shields Ave, Davis , CA, 95616, USA.
| |
Collapse
|
8
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
9
|
Ni SH, Xu JD, Sun SN, Li Y, Zhou Z, Li H, Liu X, Deng JP, Huang YS, Chen ZX, Feng WJ, Wang JJ, Xian SX, Yang ZQ, Wang S, Wang LJ, Lu L. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc Res 2021; 118:1303-1320. [PMID: 34100920 DOI: 10.1093/cvr/cvab193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS The goal of our study was to investigate the heterogeneity of cardiac macrophages (CMφs) in mice with transverse aortic constriction (TAC) via single-cell sequencing and identify a subset of macrophages associated with heart injury. METHODS AND RESULTS We selected all CMφs from CD45+ cells using single-cell mRNA sequencing data. Through dimension reduction, clustering and enrichment analyses, CD72hi CMφs were identified as a subset of proinflammatory macrophages. The pseudotime trajectory and ChIP-Seq analyses identified Rel as the key transcription factor that induces CD72hi CMφ differentiation. Rel KD and Rel-/- bone marrow chimera mice subjected to TAC showed features of mitigated cardiac injury, including decreased levels of cytokines and ROS, which prohibited cardiomyocyte death. The transfer of adoptive Rel-overexpressing monocytes and CD72hi CMφ injection directly aggravated heart injury in the TAC model. The CD72hi macrophages also exerted proinflammatory and cardiac injury effects associated with myocardial infarction (MI). In humans, patients with heart failure exhibit increased CD72hi CMφ levels following dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). CONCLUSION Bone marrow-derived, Rel-mediated CD72hi macrophages play a proinflammatory role, induce cardiac injury and, thus, may serve as a therapeutic target for multiple cardiovascular diseases. TRANSLATIONAL PERSPECTIVE Heart failure (HF) imposes an enormous clinical and economic burden worldwide and presents limited therapeutic approaches. Given the close association between inflammation and adverse outcomes, proinflammatory immune cells are considered potential therapeutic targets for HF treatment. The present studies identified a specific macrophage subset associated with myocardial injury, which may provide an alternative approach for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin-Dong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zheng Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jia-Jia Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| |
Collapse
|
10
|
Sheng Z, Zeng J, Huang W, Li L, Li B, Lv C, Yan F. Comparison of therapeutic efficacy and mechanism of paclitaxel alone or in combination with methotrexate in a collagen-induced arthritis rat model. Z Rheumatol 2020; 81:164-173. [PMID: 33320289 DOI: 10.1007/s00393-020-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To compare the therapeutic efficacy of paclitaxel (PTX) alone to its combination with methotrexate (MTX) on rheumatoid arthritis. METHODS A collagen-induced arthritis (CIA) rat model was established by induction of type II collagen. Rats were divided into blank control group, CIA model group, MTX group 1 mg/kg, PTX 1.5 mg/kg, PTX 2.5 mg/kg, PTX 3.5 mg/kg, and MTX 1 mg/kg + PTX 3.5 mg/kg, with 10 rats per group. The inflammation of the ankle joint was analyzed by H&E staining and interleukin (IL)-1β and IL‑6 expression was detected by immunohistochemistry. TUNEL assay was performed to detect synovial tissue cell apoptosis after administration of PTX and MTX either alone or in combination. TLR4 and p‑NF-κBp65 protein expression in synovial tissue and the changes of serum IL‑1β, IL‑6, IL‑12, MMP‑3, and TNFα protein factors were detected by western blot and ELISA, respectively. RESULTS PTX and MTX improved histopathological changes in CIA rats. Besides, the apoptosis rate of synovial tissue cells in the PTX 3.5 mg/kg group was more than that of the PTX + MTX group. Immunohistochemistry and western blot results indicated that PTX and MTX reduce the expression rate of IL‑6 and IL‑1β and downregulate TLR4 and p‑NF-κBp65 protein expression. Furthermore, TLR4 and p‑NF-κBp65 reduced the concentration of MMP‑3, IL‑12, IL‑6, IL1‑β, and TNFα. CONCLUSION Both PTX and MTX exert significant suppression on rheumatoid arthritis, and the combined effect of the two drugs is weaker than that of PTX alone. Moreover, intraperitoneal injection of PTX 3.5 mg/kg every other day was the optimal dose observed in this study.
Collapse
Affiliation(s)
- Z Sheng
- Department of Traditional Chinese Medicine, Liuzhou People's Hospital, No. 8 Wenchang Road, 545006, Liuzhou, Guangxi, China.
| | - J Zeng
- Department of Traditional Chinese Medicine, Liuzhou People's Hospital, No. 8 Wenchang Road, 545006, Liuzhou, Guangxi, China
| | - W Huang
- Class 3, Grade 2017, the First Clinical Medical Graduate School, Guangxi University of Traditional Chinese Medicine, 530001, Nanning, Guangxi, China
| | - L Li
- Class 3, Grade 2018, the First Clinical Medical Graduate School, Guangxi University of Traditional Chinese Medicine, Guangxi, 530001, Nanning, China
| | - B Li
- Class 3, Grade 2017, the First Clinical Medical Graduate School, Guangxi University of Traditional Chinese Medicine, 530001, Nanning, Guangxi, China
| | - C Lv
- Class 3, Grade 2017, the First Clinical Medical Graduate School, Guangxi University of Traditional Chinese Medicine, 530001, Nanning, Guangxi, China
| | - F Yan
- Class 3, Grade 2017, the First Clinical Medical Graduate School, Guangxi University of Traditional Chinese Medicine, 530001, Nanning, Guangxi, China
| |
Collapse
|
11
|
Gorabi AM, Kiaie N, Aslani S, Jamialahmadi T, Johnston TP, Sahebkar A. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight. J Autoimmun 2020; 114:102529. [PMID: 32782117 DOI: 10.1016/j.jaut.2020.102529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
The identification of RNA interference (RNAi) has caused a growing interest in harnessing its potential in the treatment of different diseases. Modulation of dysregulated genes through targeting by RNAi represents a potential approach with which to alter the biological pathways at a post-transcriptional level, especially as it pertains to autoimmunity and malignancy. Short hairpin RNAs (shRNA), short interfering RNAs (siRNA), and microRNAs (miRNA) are mainly involved as effector mechanisms in the targeting of RNAi biological pathways. The manipulation and delivery of these molecules in an efficient way promotes the specificity and stability of RNAi-based systems, while minimizing the unwanted adverse reactions by the immune system and reducing cytotoxicity and off-target effects. Advances made to date in identifying the etiopathogenesis of autoimmune diseases has prompted the utilization of RNAi-based systems in vitro and in vivo. Future investigations aimed at deciphering the molecular basis of RNAi and optimizing the delivery of RNAi-based targeting systems will hopefully promote the applicability of such regulatory mechanisms and, ultimately, transfer the acquired knowledge from bench-to-bedside to ameliorate human diseases. In this review, we seek to clarify the potential of RNAi, with a focus on siRNAs, in designing therapeutics for potential treatment of human autoimmune disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
12
|
de Jesús TJ, Ramakrishnan P. NF-κB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. iScience 2020; 23:100876. [PMID: 32062419 PMCID: PMC7031323 DOI: 10.1016/j.isci.2020.100876] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
NF-κB/Rel family of transcription factors plays a central role in initiation and resolution of inflammatory responses. Here, we identified a function of the NF-κB subunit c-Rel as a transcriptional repressor of inflammatory genes. Genetic deletion of c-Rel substantially potentiates the expression of several TNF-α-induced RelA-dependent mediators of inflammation. v-Rel, the viral homologue of c-Rel, but not RelB, also possesses this repressive function. Mechanistically, we found that c-Rel selectively binds to the co-repressor HDAC1 and competitively binds to the DNA mediating HDAC1 recruitment to the promoters of inflammatory genes. A specific point mutation at tyrosine25 in c-Rel's DNA-binding domain, for which a missense single nucleotide variation (Y25H) exists in humans, completely abrogated its ability to bind DNA and repress TNF-α-induced, RelA-mediated transcription. Our findings reveal that the transactivator NF-κB subunit c-Rel also plays a role as a transcriptional repressor in the maintenance of inflammatory homeostasis.
Collapse
Affiliation(s)
- Tristan James de Jesús
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Zhibo Yu
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mathilde Lorscheider
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
14
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
15
|
Wang Z, Li J, Zhang J, Xie X. Sodium tanshinone IIA sulfonate inhibits proliferation, migration, invasion and inflammation in rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2019; 73:370-378. [PMID: 31132732 DOI: 10.1016/j.intimp.2019.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/27/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022]
Abstract
Our study aimed to determine the effects of sodium tanshinone IIA sulfonate (STS) on proliferation, migration, invasion, and inflammation in rheumatoid arthritis human fibroblast-like synoviocytes (RA-HFLSs). Firstly, results demonstrated STS reduced proliferation, migration, invasion in HFLSs. Also, we found that STS could alleviate the reorganizations of F-actin cytoskeleton in TNF-α-treated HFLSs. In addition, STS decreased the production of IL-1β, IL-6, MMP-1, and MMP-3 in TNF-α-treated RA-HFLSs. Further study showed that STS blocked MAPK/NF-κB activations in TNF-α-stimulated RA-HFLSs. Moreover, we illustrated that STS could alleviate rheumatoid arthritis progression and prevent inflammation damage in joint tissues of collagen-induced arthritis (CIA) mice. Taken together, this study suggested that STS inhibited proliferation, migration, invasion, and inflammation of RA-HFLSs by blocking MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Orthopedics, The First People's Hospital of Yunnan Province, the People's Republic of China
| | - Jinglong Li
- Department of Orthopedics, The First People's Hospital of Yunnan Province, the People's Republic of China
| | - Jun Zhang
- Department of Orthopedics, The First People's Hospital of Yunnan Province, the People's Republic of China
| | - Xuhua Xie
- Department of Orthopedics, The First People's Hospital of Yunnan Province, the People's Republic of China.
| |
Collapse
|
16
|
Chen J, Wu W, Zhang M, Chen C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int Immunopharmacol 2019; 70:274-283. [PMID: 30851708 DOI: 10.1016/j.intimp.2019.02.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Previous study has indicated that taraxasterol (TAR), one of bioactive pentacyclic triterpenes mainly isolated from Chinese medicine herb Taraxacum officinale, displays considerable anti-inflammatory effects in various kinds of models. However, its effects on rheumatoid arthritis (RA) have still not been elucidated. In this study, we aim to investigate its anti-inflammatory effects and underlying mechanisms of TAR against RA using both interleukin (IL)-1β-stimulated human fibroblast-like synoviocytes rheumatoid arthritis (HFLS-RA) in vitro and collagen-induced arthritis (CIA) mice in vivo. Firstly, our results demonstrated that TRA significantly suppressed the IL-1β-induced expressions of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-6, and IL-8 and productions of matrix metalloproteinases (MMPs), like MMP-1 and MMP-3 in HFLS-RA in vitro. Moreover, TRA alleviated arthritis progressions and prevented inflammatory processes in the joint tissues of CIA mice in vivo. Further mechanism studies indicated that TRA blocked nuclear factor kappa B (NF-κB) activation via modulating inhibitor of kappa B (IκB), IκB kinase (IKK) and transforming growth factor-β-activated kinase 1 (TAK1). Results also demonstrated that TRA suppressed the NOD-like receptor protein 3 (NLRP3) inflammasomes through blocking expressions of NLRP3, apoptosis-associated speck-like protein containing (ASC), and caspase-1 in both IL-1β-induced HFLS-RA and CIA mice. In conclusions, current findings suggested that TRA might one of considerable therapeutic compounds for relieving rheumatoid arthritis progress via suppressing inflammations through modulating NF-κB and NLRP3 inflammasomes pathways.
Collapse
Affiliation(s)
- Jianfeng Chen
- Department of Outpatient Pharmacy, The First People's Hospital of Wenling, Wenling 317500, Zhejiang, China
| | - Weibo Wu
- Department of Pharmacy, The First People's Hospital of Wenling, Wenling 317500, Zhejiang, China
| | - Miaomiao Zhang
- Department of Outpatient Pharmacy, The First People's Hospital of Wenling, Wenling 317500, Zhejiang, China
| | - Caiming Chen
- Department of Pharmacy, The First People's Hospital of Wenling, Wenling 317500, Zhejiang, China.
| |
Collapse
|