1
|
Fettach S, Thari FZ, Karrouchi K, Benbacer L, Lee LH, Bouyahya A, Cherrah Y, Sefrioui H, Bougrin K, Faouzy MEA. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem Biol Interact 2024; 391:110902. [PMID: 38367680 DOI: 10.1016/j.cbi.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic endocrine/metabolic disorder characterized by elevated postprandial and fasting glycemic levels that result in disturbances in primary metabolism. In this study, we evaluated the metabolic effects of thiazolidine-2,4-dione derivatives in Wistar rats and Swiss mice that were fed a high-fat diet (HFD) for 4 weeks and received 90 mg/kg of streptozotocin (STZ) intraperitoneally as a T2DM model. The HFD consisted of 17% carbohydrate, 58% fat, and 25% protein, as a percentage of total kcal. The thiazolidine-2,4-dione derivatives treatments reduced fasting blood glucose (FBG) levels by an average of 23.98%-50.84%, which were also improved during the oral starch tolerance test (OSTT). Treatment with thiazolidine-2,4-dione derivatives also improved triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and total cholesterol levels (P < 0.05). The treatment intake has also shown a significant effect to modulate the altered hepatic and renal biomarkers. Further treatment with thiazolidine-2,4-dione derivatives for 28 days significantly ameliorated changes in appearance and metabolic risk factors, including favorable changes in histopathology of the liver, kidney, and pancreas compared with the HFD/STZ-treated group, suggesting its potential role in the management of diabetes. Thiazolidine-2,4-dione derivatives are a class of drugs that act as insulin sensitizers by activating peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear receptor that regulates glucose and lipid metabolism. The results of this study suggest that thiazolidine-2,4-dione derivatives may be a promising treatment option for T2DM by improving glycemic control, lipid metabolism, and renal and hepatic function.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), B.P. 1382 R.P, 10001, Rabat, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - My El Abbes Faouzy
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
2
|
Zhou W, Hou Y, Yu T, Wang T, Ding Y, Nie H. Submersion and hypoxia inhibit alveolar epithelial Na + transport through ERK/NF-κB signaling pathway. Respir Res 2023; 24:117. [PMID: 37095538 PMCID: PMC10127099 DOI: 10.1186/s12931-023-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Hypoxia is associated with many respiratory diseases, partly due to the accumulation of edema fluid and mucus on the surface of alveolar epithelial cell (AEC), which forms oxygen delivery barriers and is responsible for the disruption of ion transport. Epithelial sodium channel (ENaC) on the apical side of AEC plays a crucial role to maintain the electrochemical gradient of Na+ and water reabsorption, thus becomes the key point for edema fluid removal under hypoxia. Here we sought to explore the effects of hypoxia on ENaC expression and the further mechanism related, which may provide a possible treatment strategy in edema related pulmonary diseases. METHODS Excess volume of culture medium was added on the surface of AEC to simulate the hypoxic environment of alveoli in the state of pulmonary edema, supported by the evidence of increased hypoxia-inducible factor-1 expression. The protein/mRNA expressions of ENaC were detected, and extracellular signal-regulated kinase (ERK)/nuclear factor κB (NF-κB) inhibitor was applied to explore the detailed mechanism about the effects of hypoxia on epithelial ion transport in AEC. Meanwhile, mice were placed in chambers with normoxic or hypoxic (8%) condition for 24 h, respectively. The effects of hypoxia and NF-κB were assessed through alveolar fluid clearance and ENaC function by Ussing chamber assay. RESULTS Hypoxia (submersion culture mode) induced the reduction of protein/mRNA expression of ENaC, whereas increased the activation of ERK/NF-κB signaling pathway in parallel experiments using human A549 and mouse alveolar type 2 cells, respectively. Moreover, the inhibition of ERK (PD98059, 10 µM) alleviated the phosphorylation of IκB and p65, implying NF-κB as a downstream pathway involved with ERK regulation. Intriguingly, the expression of α-ENaC could be reversed by either ERK or NF-κB inhibitor (QNZ, 100 nM) under hypoxia. The alleviation of pulmonary edema was evidenced by the administration of NF-κB inhibitor, and enhancement of ENaC function was supported by recording amiloride-sensitive short-circuit currents. CONCLUSIONS The expression of ENaC was downregulated under hypoxia induced by submersion culture, which may be mediated by ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Therapeutic Targets of Bufalin on Renal Carcinoma and Mechanisms: Experimental Validation of Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5469795. [PMID: 35126601 PMCID: PMC8816594 DOI: 10.1155/2022/5469795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
The possible targets underlying the activity of bufalin on renal cell carcinoma (RCC) were investigated using network pharmacology and experimental approaches. PharmMapper and other databases were explored for predicting the bufalin targets and RCC-related targets. Finally, the enriched pathways and the targets were analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. Furthermore, in vitro cell experiments were used to verify bufalin activation of AKT and MAPK signaling pathways in human mesangial cells. The therapeutic targets related to bufalin were identified via 35 intersecting targets. GO analysis identified 29 molecular functions, 16 cellular components, and 91 biological processes. KEGG pathway annotation identified 15 signal transduction pathways and 4 tumor-related pathways.
Collapse
|
4
|
Ali FEM, Ahmed SF, Eltrawy AH, Yousef RS, Ali HS, Mahmoud AR, Abd-Elhamid TH. Pretreatment with Coenzyme Q10 Combined with Aescin Protects against Sepsis-Induced Acute Lung Injury. Cells Tissues Organs 2021; 210:195-217. [PMID: 34280918 DOI: 10.1159/000516192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Salwa F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reda S Yousef
- Department of Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Du Y, Zhang H, Guo Y, Song K, Zeng L, Chen Y, Xie Z, Li R. CD38 deficiency up-regulated IL-1β and MCP-1 through TLR4/ERK/NF-κB pathway in sepsis pulmonary injury. Microbes Infect 2021; 23:104845. [PMID: 34098107 DOI: 10.1016/j.micinf.2021.104845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
As a disease with high mortality,many cytokines and signaling pathways are associated with sepsis.The pro-inflammatory cytokines and chemokines are participating in the pathogenesis of sepsis, especially in early stage. Moreover, the releases and expressions of cytokines are regulated by numerous signaling pathways, including TLR4/ERK pathway. But despite many studies have expounded the pathogenesis of sepsis and the regulation of cytokines in sepsis, how CD38 influence the expressions of related molecules in sepsis are still unknown. The aim of this study is illuminating the alteration of cytokines and signaling pathways in CD38-/- mice injected with Escherichia coli.Compared with WT mice, E. coli infection results in more severe pulmonary injuries and higher mRNA expressions of cytokines. Compared with E. coli infected WT mice,CD38 knockout leads to aggravated pulmonary injury, increasedphosphorylated ERK1/2, p38 and NF-κB p65, and enhancedlevels of IL-1β, iNOS and MCP-1.While compared with E. coli infected CD38-/- mice, TLR4 mutation results in alleviated pulmonary injury, down-regulated phosphorylated ERK1/2 and NF-κB p65, and decreased expressions of IL-1β and MCP-1.CD38 deficiency increased the expressions of IL-1β andMCP-1and aggravated pulmonary injury through TLR4/ERK/NF-κB pathway in sepsis.
Collapse
Affiliation(s)
- Yuna Du
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Huiqing Zhang
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yujie Guo
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Kuangyu Song
- Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lifeng Zeng
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Yiguo Chen
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Zhengyu Xie
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Rong Li
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Lee HC, Liu FC, Tsai CN, Chou AH, Liao CC, Yu HP. Esculetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice Via Modulation of the AKT/ERK/NF-κB and RORγt/IL-17 Pathways. Inflammation 2021; 43:962-974. [PMID: 32170603 DOI: 10.1007/s10753-020-01182-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Esculetin, a coumarin derivative from various natural plants, has an anti-inflammatory property. In the present study, we examined if esculetin has any salutary effects against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Acute lung injury (ALI) was induced via the intratracheal administration of LPS, and esculetin (20 and 40 mg/kg) was given intraperitoneally 30 min before LPS challenge. After 6 h of LPS administration, lung tissues were collected for analysis. Pretreatment with esculetin significantly attenuated histopathological changes, inflammatory cell infiltration, and production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in the lung tissue. Furthermore, esculetin inhibited the protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB) pathways and downregulated the expression of RORγt and IL-17 in LPS-induced ALI. Our results indicated that esculetin possesses anti-inflammatory and protective effects against LPS-induced ALI via inhibition of the AKT/ERK/NF-κB and RORγt/IL-17 pathways.
Collapse
Affiliation(s)
- Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
MiR-124-3p helps to protect against acute respiratory distress syndrome by targeting p65. Biosci Rep 2021; 40:224100. [PMID: 32391561 PMCID: PMC7253404 DOI: 10.1042/bsr20192132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury that has a high mortality rate and leads to substantial healthcare costs. MicroRNA-124-3p (miR-124-3p) helps to suppress inflammation during a pulmonary injury. However, its mechanism of action is largely unknown, and its role in ARDS remains to be determined. Methods: Mice and NR8383 cells were exposed to lipopolysaccharides (LPS) to induce ARDS, and their miR-124-3p levels were determined. After a miRNA agomir was administrated to the mice, their pulmonary injuries were evaluated by H&E staining and assays for peripheral inflammatory cytokine levels. The direct interaction between miR-124-3p and p65 was predicted, and then confirmed by a luciferase activity assay. The role played by miRNA-124-3p in regulating p65 expression was further examined by transfection with its agomir, and its role in cell apoptosis was investigated by observing the effects of miRNA overexpression in vitro and in vivo. Results: After exposure to LPS, there was a consistent decrease in miR-124-3p expression in the lungs of mice and in NR8383 cells. After treatment with the miR-124-3p agomir, the degrees of pulmonary injury (e.g. alveolar hemorrhage and interstitial edema), and the increases in IL-1β, IL-6, and TNF-α levels induced by LPS were significantly attenuated. Overexpression of miR-124-3p in NC8383 cells and lung tissues significantly suppressed LPS-induced p65 expression and cell apoptosis. Conclusions: These results suggest that miR-124-3p directly targeted p65, and thereby decreased the levels of inflammation and pulmonary injury in a mouse model of ARDS.
Collapse
|
8
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
9
|
Zhang Y, Han Z, Jiang A, Wu D, Li S, Liu Z, Wei Z, Yang Z, Guo C. Protective Effects of Pterostilbene on Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting NF-κB and Activating Nrf2/HO-1 Signaling Pathways. Front Pharmacol 2021; 11:591836. [PMID: 33633565 PMCID: PMC7901969 DOI: 10.3389/fphar.2020.591836] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pterostilbene (PTER) is a kind of stilbene compound with biological activity isolated from plants such as red sandalwood, blueberry and grape. It has anti-tumor, anti-bacterial, anti-oxidation and other pharmacological activities. However, the underlying mechanism of the protective effect of PTER on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remained not clarified. In this study, LPS was used to establish a mouse model of ALI. Bronchoalveolar lavage fluid (BALF) was collected for inflammatory cells, and the wet-to-dry weight ratio of the lungs was measured. The activities of myeloperoxidase (MPO), antioxidant indexes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and oxidation index such as malondialdehyde (MDA) in lung tissues of mice were measured by the corresponding kits. The levels of Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), TNF-α, IL-6 and IL-1β in lung tissues of mice were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The activities of Nrf2, HO-1, p-p65 and p-IκB were determined by western blotting. The results showed that the model of LPS-induced ALI was successfully replicated, and it was found that PTER could significantly improve the pathological degree of ALI such as sustained the integrity of the lung tissue structure, alleviated pulmonary interstitial edema and alveolar wall thickening, reduced infiltrated inflammatory cells. PTER could decrease the number of inflammatory cells and obviously inhibit the increase of W/D ratio caused by LPS. PTER could also significantly reduce LPS-induced MPO and MDA, and increase LPS-decreased SOD, CAT and GSH-Px in the lungs. In addition, it was also found that PTER has the ability to decrease LPS-induced production of COX-2, iNOS, TNF-α, IL-6 and IL-1β. The underlying mechanism involved in the protective effect of PTER on ALI were via activating Nrf2 and HO-1, and inhibiting the phosphorylation of p65 and IκB. These results suggested that PTER can protect LPS-induced ALI in mice by inhibiting inflammatory response and oxidative stress, which provided evidence that PTER may be a potential therapeutic candidate for LPS-induced ALI intervention.
Collapse
Affiliation(s)
- Yong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen Han
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Aimin Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Yang Y, Han C, Sheng Y, Wang J, Zhou X, Li W, Guo L, Ruan S. The Mechanism of Aureusidin in Suppressing Inflammatory Response in Acute Liver Injury by Regulating MD2. Front Pharmacol 2020; 11:570776. [PMID: 33192512 PMCID: PMC7655772 DOI: 10.3389/fphar.2020.570776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Objective In this study, we mainly explored the mechanism and target of the anti-inflammatory effects of Aureusidin (Aur) in acute liver injury. Methods Lipopolysaccharide (LPS) was used to induce inflammatory injury in Kupffer cells (KCs) in vitro. After Aur treatment with gradient concentration, flow cytometry, propidium iodide (PI) staining, and Hoechst 33342 staining were used to detect the apoptotic level of KCs, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of inflammatory factors, including Interleukin-1β (IL-1β), Interleukin-18 (IL-18), and tumor necrosis factor alpha (TNF-α). Western blot was used to detect the expression of toll-like receptor 4 (TLR4), myeloid differentiation protein-2 (MD2), MyD88, and p-P65. Aur was labeled with biotin, followed by a pull-down assay to detect its binding with MD2. Moreover, D-GalN/LPS was used to induce acute liver injury in mice in vitro, followed by Aur treatment by gavage. H&E staining was used to detect the pathological changes of liver tissue, an IF assay was used to detect the expression of MD2, Western blot was used to detect the expression of relevant proteins. Results Aur pretreatment could significantly inhibit LPS-induced KC injury, downregulate the apoptotic level, inhibit the expression of inflammatory factors, decrease the level of MDA, and downregulate the expression of MD2 in cells. Aur could inhibit the activation level of TLR4/MD2-NF-κB in a dose-dependent pattern, a high dose of Aur had a superior effect compared to low-dose Aur. In the case of MD2 deletion, the effects of Aur were suppressed. Additionally, pull-down and co-immunoprecipitation assays show that Aur can bind with the MD2 protein to inhibit the activation of TLR4/MD2-NF-κB. Results of mice experiments also showed that Aur could relieve liver injury, decrease the levels of ALT and AST, and simultaneously downregulate the levels of inflammatory factors in tissues and peripheral blood. Conclusion We found that Aur exerted an anti-inflammatory effect by directly targeting the MD2 protein, further inhibiting the expression of TLR4/MD2-NF-κB, thereby relieving acute liver injury. Therefore, Aur might be a potential inhibitor for MD2.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, Yang M, Umar T, Guo M, Deng G. Anti-inflammatory effects of Hederacoside-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microb Pathog 2019; 137:103767. [DOI: 10.1016/j.micpath.2019.103767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/29/2019] [Indexed: 01/08/2023]
|
12
|
Niu X, Zang L, Li W, Xiao X, Yu J, Yao Q, Zhao J, Ye Z, Hu Z, Li W. Anti-inflammatory effect of Yam Glycoprotein on lipopolysaccharide-induced acute lung injury via the NLRP3 and NF-κB/TLR4 signaling pathway. Int Immunopharmacol 2019; 81:106024. [PMID: 31784404 DOI: 10.1016/j.intimp.2019.106024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and β-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1β, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - JinJin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Jinmeng Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Zhaobo Ye
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Hu
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China.
| |
Collapse
|
13
|
Zhao P, Liu G, Cui Y, Sun X. Propylene glycol alginate sodium sulphate attenuates LPS-induced acute lung injury in a mouse model. Innate Immun 2019; 25:513-521. [PMID: 31495247 PMCID: PMC6900665 DOI: 10.1177/1753425919874491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propylene glycol alginate sodium sulphate, a sulphated polysaccharide,
has been used to treat hyperlipidaemia and ischaemia–reperfusion
injury of liver. This study aimed to investigate the effect of
propylene glycol alginate sodium sulphate on LPS-induced acute lung
injury. Propylene glycol alginate sodium sulphate was injected
intraperitoneally into male C57BL/6 mice with or without LPS
administration. Survival rates were calculated. Serum, bronchoalveolar
lavage fluid and lung tissues were collected to determine lung
histology, wet/dry ratio, Evans blue albumin permeability, protein
levels, the counts of immune cells and the levels of inflammatory
cytokines and chemokines. Serum alanine aminotransferase, aspartate
transaminase, creatinine and blood urea nitrogen levels were also
measured. Additionally, NF-κB signalling was detected in the lung.
Propylene glycol alginate sodium sulphate treatment significantly
improved the survival of mice suffering from LPS. Lung histological
injury, wet/dry ratio, Evans blue albumin permeability, neutrophils
and the inflammatory cytokines and chemokines were significantly
reduced by propylene glycol alginate sodium sulphate treatment. NF-κB
signalling was significantly inhibited by propylene glycol alginate
sodium sulphate in the lung of mice subjected to LPS. Furthermore,
serum alanine aminotransferase, aspartate transaminase, creatinine and
blood urea nitrogen levels were also significantly decreased after
propylene glycol alginate sodium sulphate administration. This study
suggests that NF-κB signalling and inhibition of pro-inflammatory
cytokines, chemokines and neutrophil accumulation may be involved in
the process of acute lung injury attenuation by propylene glycol
alginate sodium sulphate.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Guoliang Liu
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Yunfeng Cui
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Xufang Sun
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| |
Collapse
|
14
|
Zhang H, Liu Y, Li H, Li J, Luo Y, Yan X. Novel insights into the role of LRRC8A in ameliorating alveolar fluid clearance in LPS induced acute lung injury. Eur J Pharmacol 2019; 861:172613. [PMID: 31421089 DOI: 10.1016/j.ejphar.2019.172613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat-containing 8A (LRRC8A) protein was recently identified as an essential component of volume-regulated anion channel which plays a central role in maintaining cell volume. The aim of this study was to elucidate the role of LRRC8A in alveolar fluid clearance (AFC) and the effect of inflammatory cytokines on LRRC8A and the underlying mechanism. Lipopolysaccharide (LPS) was used to generate a rat acute lung injury model. The results showed that the concentrations of IL-1β, TNF-α and IL-6 in bronchoalveolar lavage fluid increased significantly, but the expression of LRRC8A in the lung tissue decreased dramatically in the acute lung injury group followed by a decline in the AFC rate. Additionally, LRRC8A knockdown reduced AFC in normal rats. However, specific overexpression of LRRC8A in the lung could increase AFC. Furthermore, we observed the effects of LPS, IL-1β, TNF-α and IL-6 on the LRRC8A current in alveolar type II (ATII) cells, and IL-1β showed the greatest inhibition among them, which was involved in phospho-p38 activation. Overall, LRRC8A plays an essential role in the progression of AFC in LPS-induced acute lung injury, and chronic treatment with IL-1β or TNF-α could inhibit the function of LRRC8A in ATII cells by targeting phospho-p38. All of the findings suggested that LRRC8A could be a new partner in AFC and a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yani Liu
- Department of pharmacology, School of pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
15
|
Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway. Biomed Pharmacother 2019; 115:108971. [PMID: 31102910 DOI: 10.1016/j.biopha.2019.108971] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis, as life-threatening organ dysfunction caused by a dysregulated host response to infection, is characterized by the extensive release of cytokines and other mediators. Sini decoction (SND), a traditional Chinese prescription medicine, has been used clinically for the treatment of sepsis. But its explicit mechanism of action is still unclear. The present study aims to evaluate the potential protective effects of SND on sepsis-induced acute lung injury (ALI). After SND intervention, the lung tissues of each experimental group were collected. H&E sections were used to observe the pathological changes of lung tissue, and alveolar lavage fluid was collected to detect the infiltration of inflammatory cells. Level of inflammatory factors in lung tissue were analyzed by qRT-PCR. The change of Renin angiotensin system (RAS), as well as downstream MAPK/NF-κB signaling pathways were measured by Western blot. For in vitro experiments, human umbilical vein endothelial cells (HUVECs) were pretreated with lipopolysaccharide (LPS) and treated with SND. Subsequently, the expression levels of RAS and MAPK/NF-κB signaling pathways were measured by Western blot. In vivo, we found that SND significantly attenuated sepsis-induced pathological injury in the lung. SND also inhibited LPS-mediated inflammatory cell infiltration, the expression of pro-apoptotic proteins and the production of IL-6, IL-1β, TNF-α and MCP-1. In vitro, experiments using a co-culture of HUVECs with SND showed that there was a decrease in pro-apoptotic protein and pro-inflammatory mediator. In this research, we also found that SND protective action could be attributed to the regulation of renin-angiotensin system (RAS). MAPKs and NF-κB pathways. To conclude, our study demonstrated that SND ameliorates sepsis-induced-ALI via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway.
Collapse
|
16
|
Cui T, Zhang W, Li S, Chen X, Chang Y, Yi X, Kang P, Yang Y, Chen J, Liu L, Jian Z, Li K, Wang G, Gao T, Song P, Li C. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. J Invest Dermatol 2019; 139:2174-2184.e4. [PMID: 30998983 DOI: 10.1016/j.jid.2019.03.1148] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Vitiligo is a cutaneous depigmentation disorder caused by the destruction of epidermal melanocytes. The generation and the skin infiltration of autoreactive CD8+ cytotoxic T cells triggered by oxidative stress play a critical role in vitiligo. High-mobility group protein B1 (HMGB1) is a classic damage-associated molecular pattern molecule with strong proinflammatory effects in inflammatory reactions. A previous study reported an enhanced expression of HMGB1 in vitiligo lesions, but the role of HMGB1 in cutaneous inflammation of vitiligo is still unknown. In the present study, we initially found that HMGB1 was released from the nucleus of melanocytes in vitiligo perilesional skin. Furthermore, cultured normal human melanocytes could release HMGB1 under treatment with hydrogen peroxide. Moreover, HMGB1 facilitated the secretion of CXCL16 and IL-8 from keratinocytes by binding to the receptor for advanced glycation end products and activating NF-κB and extracellular signal-regulated kinase signaling pathways. Subsequently, HMGB1 led to the formation of chemotaxis for the migration of CD8+ T cells from patients with vitiligo by increasing the release of CXCL16 from keratinocytes. Additionally, HMGB1 promoted the maturation of dendritic cells from patients with vitiligo. Altogether, our study demonstrates that HMGB1 released from melanocytes contributes to the formation of oxidative stress-induced autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Yang F, Meng L, Han P, Chen D, Wang M, Jiang Y, Wu Y, Wu Y, Xing N. New therapy with XLQ
®
to suppress chronic prostatitis through its anti‐inflammatory and antioxidative activities. J Cell Physiol 2019; 234:17570-17577. [PMID: 30790289 DOI: 10.1002/jcp.28380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Feiya Yang
- Department of Urology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing P. R. China
| | - Lingquan Meng
- Department of Urology Qianfoshan Hospital Shandong University Jinan P. R. China
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| | - Panpan Han
- Department of Hematology Qilu Hospital Shandong University Jinan P. R. China
| | - Dexi Chen
- Department of Hepatology, Beijing You'an Hospital Capital Medical University Beijing P. R. China
- Department of Hepatology, Beijing Institute of Hepatology Beijing P. R. China
| | - Mingshuai Wang
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| | - Yongguang Jiang
- Department of Urology Beijing Anzhen Hospital Capital Medical University Beijing P. R. China
| | - Yanqiao Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine Shijiazhuang Yiling Pharmaceutical Co., Ltd Shijiazhuang P. R. China
| | - Yiling Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine Shijiazhuang Yiling Pharmaceutical Co., Ltd Shijiazhuang P. R. China
| | - Nianzeng Xing
- Department of Urology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing P. R. China
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| |
Collapse
|
18
|
Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem 2018; 10:2253-2264. [PMID: 30095283 DOI: 10.4155/fmc-2018-0172] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Acute lung injury is a common clinical syndrome associated with significant morbidity. Myricetin has been demonstrated to inhibit inflammation in a variety of diseases. In this study, we aimed to investigate the protective effects of myricetin on inflammation in lipopolysaccharide-stimulated RAW 264.7 cells and lipopolysaccharide-induced lung injury model. Results/methodology: In this study, we detected the anti-inflammatory effects of myricetin by ELISA, RT-PCR and Western blot, respectively. Myricetin significantly inhibited the production of the proinflammatory cytokines in vitro and in vivo. It exerted an anti-inflammatory effect through suppressing the NF-κB p65 and AKT activation in NF-κB pathway and JNK, p-ERK and p38 in MAPK signaling pathway. Conclusion: Myricetin alleviated acute lung injury by inhibiting macrophage activation, and inhibited inflammation in vitro and in vivo. It may be a potential therapeutic candidate for the prevention of inflammatory diseases.
Collapse
|