1
|
Du MD, He KY, Fan SQ, Li JY, Liu JF, Lei ZQ, Qin G. The Mechanism by Which Cyperus rotundus Ameliorates Osteoarthritis: A Work Based on Network Pharmacology. J Inflamm Res 2024; 17:7893-7912. [PMID: 39494203 PMCID: PMC11531273 DOI: 10.2147/jir.s483652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background Cyperus rotundus (CR) is widely used in traditional Chinese medicine to prevent and treat a variety of diseases. However, its functions and mechanism of action in osteoarthritis (OA) has not been elucidated. Here, a comprehensive strategy combining network pharmacology, molecular docking, molecular dynamics simulation and in vitro experiments was used to address this issue. Methods The bioactive ingredients of CR were screened in TCMSP database, and the potential targets of these ingredients were obtained through Swiss Target Prediction database. Genes in OA pathogenesis were collected through GeneCards, OMIM and DisGeNET databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using DAVID database. STRING database and Cytoscape 3.10 software were used to construct "component-target-pathway" network, and predict the core targets affected by CR. The binding affinity between bioactive components and the core targets was evaluated by molecular docking and molecular dynamics simulation. The therapeutic activity of kaempferol on chondrocytes in inflammatory conditions was verified by in vitro experiments. Results Fifteen CR bioactive ingredients were obtained, targeting 192 OA-related genes. A series of biological processes, cell components, molecular functions and pathways were predicted to be modulated by CR components. The core targets of CR in OA treatment were AKT serine/threonine kinase 1 (AKT1), interleukin 1 beta (IL1B), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), BCL2 apoptosis regulator (BCL2), signal transducer and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR), hypoxia-inducible factor 1 subunit alpha (HIF1A), matrix metallopeptidase 9 (MMP9), estrogen receptor 1 (ESR1) and PPARG orthologs from vertebrates (PPARG), and the main bioactive ingredients of CR showed good binding affinity with these targets. In addition, kaempferol, one of the CR bioactive components, weakens the effects of IL-1β on the viability, apoptosis and inflammation of chondrocytes. Conclusion Theoretically, CR has great potential to ameliorate the symptoms and progression of OA, via multiple components, multiple targets, and multiple downstream pathways.
Collapse
Affiliation(s)
- Min-Dong Du
- Department of Osteoarthrosis, Xing-An Jieshou Orthopedics Hospital, Guilin, People’s Republic of China
- Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Kai-Yi He
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Si-Qi Fan
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Jin-Yi Li
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Jin-Fu Liu
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Zi-Qiang Lei
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Gang Qin
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Liang Z, Han Y, Chen T, Wang J, Lin K, Yuan L, Li X, Xu H, Wang T, Liu Y, Xiao L, Liang Q. Application of 3D bioprinting technology apply to assessing Dangguiniantongtang (DGNT) decoctions in arthritis. Chin Med 2024; 19:96. [PMID: 38978120 PMCID: PMC11229348 DOI: 10.1186/s13020-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/19/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.
Collapse
Affiliation(s)
- Zhichao Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yunxi Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Xuefei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tengteng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| | - Lianbo Xiao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Lee CY, Chang YC, Yang KC, Lin YF, Wu ATH, Tseng CL. Development and functional evaluation of a hyaluronic acid coated nano-formulation with kaempferol as a novel intra-articular agent for Knee Osteoarthritis treatment. Biomed Pharmacother 2024; 175:116717. [PMID: 38749179 DOI: 10.1016/j.biopha.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Knee osteoarthritis (OA) involves articular cartilage degradation driven mainly by inflammation. Kaempferol (KM), known for its anti-inflammatory property, holds potential for OA treatment. This study investigated the potential of hyaluronic acid (HA)-coated gelatin nanoparticles loaded with KM (HA-KM GNP) for treating knee OA. KM was encapsulated into gelatin nanoparticles (KM GNP) and then coated with HA to form HA-KM GNPs. Physical properties were characterized, and biocompatibility and cellular uptake were assessed in rat chondrocytes. Anti-inflammatory and chondrogenic properties were evaluated using IL-1β-stimulated rat chondrocytes, compared with HA-coated nanoparticles without KM (HA GNP) and KM alone. Preclinical efficacy was tested in an anterior cruciate ligament transection (ACLT)-induced knee OA rat model treated with intra-articular injection of HA-KM GNP. Results show spherical HA-KM GNPs (88.62 ± 3.90 nm) with positive surface charge. Encapsulation efficiency was 98.34 % with a sustained release rate of 18 % over 48 h. Non-toxic KM concentration was 2.5 μg/mL. In IL-1β-stimulated OA rat chondrocytes, HA-KM GNP significantly down-regulated RNA expression of IL-1β, TNF-α, COX-2, MMP-9, and MMP-13, while up-regulating SOX9 compared to HA GNP, and KM. In vivo imaging demonstrated significantly higher fluorescence intensity within rat knee joints for 3 hours post HA-KM GNP injection compared with KM GNP (185.2% ± 34.1% vs. 45.0% ± 16.7%). HA-KM GNP demonstrated significant effectiveness in reducing subchondral sclerosis, attenuating inflammation, inhibiting matrix degradation, restoring cartilage thickness, and reducing the severity of OA in the ACLT rat model. In conclusion, HA-KM GNP holds promise for knee OA therapy.
Collapse
Affiliation(s)
- Ching-Yu Lee
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan; Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Orthopedic Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yung-Fang Lin
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan.
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
4
|
Jiang X, Cui X, Nie R, You H, Tang Z, Liu W. Network pharmacology-based analysis on the key mechanisms of Yiguanjian acting on chronic hepatitis. Heliyon 2024; 10:e29977. [PMID: 38756592 PMCID: PMC11096846 DOI: 10.1016/j.heliyon.2024.e29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Chronic hepatitis (CH) encompasses a prevalent array of liver conditions that significantly contribute to global morbidity and mortality. Yiguanjian (YGJ) is a classical traditional Chinese medicine with a long history of medicinal as a treatment for CH. Although it has been reported that YGJ can reduce liver inflammation, the intricate mechanism requires further elucidation. We used network pharmacology approaches in this work, such as gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and network-based analysis of protein-protein interactions (PPIs), to clarify the pharmacological constituents, potential therapeutic targets, and YGJ signaling pathways associated with CH. Employing the random walk restart (RWR) algorithm, we identified GNAS, GNB1, CYP2E1, SFTPC, F2, MAPK3, PLG, SRC, HDAC1, and STAT3 as pivotal targets within the PPI network of YGJ-CH. YGJ attenuated liver inflammation and inhibited GNAS/STAT3 signaling in vivo. In vitro, we overexpressed the GNAS gene further to verify the critical role of GNAS in YGJ treatment. Our findings highlight GNAS/STAT3 as a promising therapeutic target for CH, providing a basis and direction for future investigations.
Collapse
Affiliation(s)
- Xiaodan Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinyi Cui
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruifang Nie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongjie You
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zuoqing Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenlan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Li Z, Chen C, Wei W, Li Z, Huang H, Zhou H, He W, Xia J, Li B, Yang Y. S100A12 is involved in the pathology of osteoarthritis by promoting M1 macrophage polarization via the NF-κB pathway. Connect Tissue Res 2024; 65:133-145. [PMID: 38492210 DOI: 10.1080/03008207.2024.2310852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease that affects millions worldwide. Synovitis and macrophage polarization are important factors in the development of OA. However, the specific components of synovial fluid (SF) responsible for promoting macrophage polarization remain unclear. METHODS Semi-quantitative antibody arrays were used to outline the proteome of SF. Differential expression analysis and GO/KEGG were performed on the obtained data. Immunohistochemistry and ELISA were used to investigate the relationship between SF S100A12 levels and synovitis levels in clinalclinical samples. In vitro cell experiments were conducted to investigate the effect of S100A12 on macrophage polarization. Public databases were utilized to predict and construct an S100A12-centered lncRNA-miRNA-mRNA competing endogenous RNA network, which was preliminarily validated using GEO datasets. RESULTS The study outlines the protein profile in OA and non-OA SF. The results showed that the S100A12 level was significantly increased in OA SF and inflammatory chondrocytes. The OA synovium had more severe synovitis and higher levels of S100A12 than non-OA synovium. Exogenous S100A12 upregulated the levels of M1 markers and phosphorylated p65 and promoted p65 nuclear translocation, while pretreatment with BAY 11-7082 reversed these changes. It was also discovered that LINC00894 was upregulated in OA and significantly correlated with S100A12, potentially regulating S100A12 expression by acting as a miRNA sponge. CONCLUSIONS This study demonstrated that S100A12 promotes M1 macrophage polarization through the NF-κB pathway, and found that LINC00894 has the potential to regulate the expression of S100A12 as a therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihua Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Wei
- The First Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, Shaanxi, China
| | - Zhendong Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haichao Zhou
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenbao He
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang Xia
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfeng Yang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
7
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Yamaura K, Nelson AL, Nishimura H, Rutledge JC, Ravuri SK, Bahney C, Philippon MJ, Huard J. Therapeutic potential of senolytic agent quercetin in osteoarthritis: A systematic review and meta-analysis of preclinical studies. Ageing Res Rev 2023; 90:101989. [PMID: 37442369 DOI: 10.1016/j.arr.2023.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Quercetin, a natural flavonoid, has shown promise as a senolytic agent for various degenerative diseases. Recently, its protective effect against osteoarthritis (OA), a representative age-related disease of the musculoskeletal system, has attracted much attention. The aim of this study is to summarize and analyze the current literature on the effects of quercetin on OA cartilage in in vivo preclinical studies. METHODS The Medline (via/using PubMed), Embase, and Web of Science databases were searched up to March 10th, 2023. Risk of bias and the qualitative assessment including mechanisms of all eligible studies and a meta-analysis of cartilage histological scores among the applicable studies was performed. RESULTS A total of 12 in vivo animal studies were included in this systematic review. A random-effects meta-analysis was performed on six studies using the Osteoarthritis Research Society International (OARSI) scoring system, revealing that quercetin significantly improved OA cartilage OARSI scores (SMD, -6.30 [95% CI, -9.59 to -3.01]; P = 0.0002; heterogeneity: I2 = 86%). The remaining six studies all supported quercetin's protective effects against OA during disease and aging. CONCLUSIONS Quercetin has shown beneficial effects on cartilage during OA across animal species. Future double-blind randomized controlled clinical trials are needed to verify the efficacy of quercetin in the treatment of OA in humans.
Collapse
Affiliation(s)
- Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Anna Laura Nelson
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA; Department of Orthopaedic Surgery, University Hospital of Occupational and Environmental Health, Fukuoka, Japan
| | - Joan C Rutledge
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Sudheer K Ravuri
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Chelsea Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA; The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Marc J Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA; The Steadman Clinic, Vail, CO, USA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA.
| |
Collapse
|
9
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
10
|
Chen Y, Xue Y, Wang X, Jiang D, Xu Q, Wang L, Zheng Y, Shi Y, Cao Y. Molecular mechanisms of the Guizhi decoction on osteoarthritis based on an integrated network pharmacology and RNA sequencing approach with experimental validation. Front Genet 2023; 14:1079631. [PMID: 36760992 PMCID: PMC9905689 DOI: 10.3389/fgene.2023.1079631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Our aim was to determine the potential pharmacological mechanisms of the Guizhi decoction (GZD) in the treatment of osteoarthritis (OA) through an integrated approach of network pharmacological analyses, RNA sequencing (RNA-seq), and experimental validation. Methods: The quality control and identification of bioactive compounds of the GZD were carried out by using ultra-performance liquid chromatography (UPLC), and their OA-related genes were identified through overlapping traditional Chinese medicine systems pharmacology database (TCMSP), DrugBank and SEA Search Server databases, and GeneCards. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were implemented after constructing the component-target network. RNA-seq was used to screen differentially expressed genes (DEGs) under intervention conditions with and without the GZD in vitro. The crossover signaling pathways between RNA-seq and network pharmacology were then analyzed. Accordingly, protein-protein interaction (PPI) networks, GO, and KEGG analysis were performed using the Cytoscape, STRING, or DAVID database. The OA rat model was established to further verify the pharmacological effects in vivo. Hematoxylin-eosin (H&E) and safranin O/fast green (S-O) staining were used to grade the histopathological features of the cartilage. We verified the mRNA and protein expressions of the key targets related to the TNF signaling pathways in vivo and in vitro by qPCR, Western blotting (WB), and immunofluorescence assay. In addition, we also detected inflammatory cytokines in the rat serum by Luminex liquid suspension chip, which included tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Results: Eighteen compounds and 373 targets of the GZD were identified. A total of 2,356 OA-related genes were obtained from the GeneCards database. A total of three hub active ingredients of quercetin, kaempferol, and beta-sitosterol were determined, while 166 target genes associated with OA were finally overlapped. The RNA-seq analysis revealed 1,426 DEGs. In the KEGG intersection between network pharmacology and RNA-seq analysis, the closest screening relevant to GZD treatment was the TNF signaling pathway, of which TNF, IL-6, and IL-1β were classified as hub genes. In consistent, H&E and S-O staining of the rat model showed that GZD could attenuate cartilage degradation. When compared with the OA group in vivo and in vitro, the mRNA levels of TNF-α, IL-1β, IL-6, matrix metalloproteinase 3 (MMP3), and matrix metalloproteinase 9 (MMP9) were all downregulated in the GZD group (all p < 0.05). The expression levels of anabolic proteins (Col2α1 and SOX9) were all higher in the GZD group than in the OA group (p < 0.05), while the expression levels of the catabolic proteins (MMP9 and COX-2) and TNF-α in the GZD group were significantly lower than those in the OA group (p < 0.05). In addition, the expression levels of TNF, IL-6, and IL-1β were upregulated in the OA group, while the GZD group prevented such aberrations (p < 0.01). Conclusion: The present study reveals that the mechanism of the GZD against OA may be related to the regulation of the TNF signaling pathway and inhibition of inflammatory response.
Collapse
Affiliation(s)
- Yan Chen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xue
- Shanghai Sunshine Rehabilitation Centre, Shanghai Yangzhi Rehabilitation Hospital, Shanghai, China
| | - Xuezong Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding Jiang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinguang Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxin Zheng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Shi
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Ying Shi, ; Yuelong Cao,
| | - Yuelong Cao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Ying Shi, ; Yuelong Cao,
| |
Collapse
|
11
|
Liu X, He Y, Tong Y, Huang Q, Shang H, Chen Z, Tang K. PODNL1 promotes cell migration and regulates the epithelial/mesenchymal transition process in bladder cancer. Biochem Biophys Res Commun 2022; 620:165-172. [DOI: 10.1016/j.bbrc.2022.06.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
12
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
13
|
Shao Y, He J, Zhang X, Xie P, Lian H, Zhang M. Mechanism of Astragali Radix for the treatment of osteoarthritis: A study based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e29885. [PMID: 35839041 PMCID: PMC11132399 DOI: 10.1097/md.0000000000029885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by many factors. Astragali Radix (Huangqi), a traditional Chinese medicine (TCM), is widely used to treat OA. Although it can inhibit the progression of OA, its pharmacological mechanism is unclear. In this study, we used a network pharmacological approach to determine the mechanism by which Huangqi inhibits the progression of OA. We obtained the active ingredients of Huangqi from the Traditional Chinese Systems Pharmacology database and identified potential targets of these ingredients. Next, we identified the OA-related targets by using the GeneCards and Online Mendelian Inheritance in Man databases. Then, a protein-protein interaction (PPI) network was established based on the overlapping genes between the Huangqi targets and the OA targets, and the interactions were analyzed. Subsequently, the Metascape database was used to perform the Gene Ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis. Furthermore, selected active ingredients and corresponding targets were investigated through molecular docking. In total, 20 active ingredients and 206 related targets were identified. The results of Gene Ontology enrichment analysis showed that the intersection targets were mainly involved in immune inflammation, proliferation, and apoptosis. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that Huangqi might exert antiosteoarthritis effect mainly through the PI3K-Akt signaling pathway, apoptosis, the mitogen-activated protein kinases signaling pathway, and the p53 signaling pathway. Moreover, the molecular docking results indicated that quercetin and kaempferol exhibited the good binding capacity to transcription factor JUN, tumor necrosis factor, and protein kinase B. In summary, we investigated the therapeutic effects of Huangqi from a systemic perspective. These key targets and pathways provide promising directions for future studies to reveal the exact regulating mechanism of Huangqi against OA.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao He
- Department of Traditional Chinese Internal Medicine, Yancheng Hospital of Traditional Chinese Medicine, Luohe, Henan, China
| | - Xinan Zhang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Panpan Xie
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Orthopedics, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Mechanism of Herb Pairs Astragalus mongholicus and Curcuma phaeocaulis Valeton in Treating Gastric Carcinoma: A Network Pharmacology Combines with Differential Analysis and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361431. [PMID: 35321506 PMCID: PMC8938068 DOI: 10.1155/2022/8361431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Background Gastric carcinoma (GC) is a kind of digestive tract tumor that is highly malignant and has a very poor prognosis. Although both Astragalus mongholicus (AM, huáng qí) and Curcuma phaeocaulis Valeton (CPV, é zhú) can slow the onset and progression of GC, the mechanism by which AM-CPV works in the treatment of GC is uncertain. Materials and Methods The traditional Chinese medicine network databases TCMSP, TCMID, and ETCM were used to identify the key functional components and associated targets of AM and CPV. To establish a theoretical foundation, the development of gastric cancer (GC) was predicted utilizing a GEO gene chip and TCGA difference analysis mixed with network pharmacology. A herbal-ingredient-target network and a core target-signal pathway network were created using GO and KEGG enrichment analyses. The molecular docking method was used to evaluate seventeen main targets and their compounds. Results Cell activity, reactive oxygen species modification, metabolic regulation, and systemic immune activation may all be involved in the action mechanism of the AM-CPV drug-pair in the treatment of GC. It inhibits the calcium signaling route, the AGE-RAGE signaling system, the cAMP signaling pathway, the PI3K-Akt signaling network, and the MAPK signaling pathway, slowing the progression of GC. The number of inflammatory substances in the tumor microenvironment is reduced, GC cell proliferation is deprived, apoptosis is promoted, and GC progression is retarded through controlling the IL-17 signaling route, TNF signaling pathway, and other inflammation-related pathways. Conclusions The AM-CPV pharmaceutical combination regulates GC treatment via a multitarget, component, and signal pathway with a cooperative and bidirectional regulatory mechanism. Its active constituents may treat GC by regulating the expression of STAT1, MMP9, IL6, HSP90AA1, JUN, CCL2, IFNG, CXCL8, and other targets, as well as activating or inhibiting immune-inflammatory and cancer signaling pathways.
Collapse
|
15
|
Liu SC, Tsai CH, Wang YH, Su CM, Wu HC, Fong YC, Yang SF, Tang CH. Melatonin abolished proinflammatory factor expression and antagonized osteoarthritis progression in vivo. Cell Death Dis 2022; 13:215. [PMID: 35256585 PMCID: PMC8901806 DOI: 10.1038/s41419-022-04656-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/15/2023]
Abstract
Progressive structural changes in osteoarthritis (OA) involve synovial inflammation and angiogenesis, as well as activation of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin (IL)-8, and the angiogenic factor vascular endothelial growth factor (VEGF). The endogenous hormone melatonin (N-acetyl-5-methoxytryptamine) is involved in antioxidative and anti-inflammatory activities, but how it antagonizes OA progression via its specific receptors is unclear. Here, we demonstrate that the MT1 melatonin receptor, but not the MT2 receptor, is highly expressed in normal tissue and only minimally in OA tissue. By targeting the MT1 receptor, melatonin reversed OA-induced pathology and effectively reduced levels of TNF-α, IL-8, and VEGF expression in OA synovial fibroblasts and synovium from rats with severe OA. Interestingly, we found that the anabolic activities of melatonin involved the MT1 receptor, which upregulated microRNA-185a through the PI3K/Akt and ERK signaling pathways in OA synovial fibroblasts. Our investigation confirms the role of the MT1 receptor in melatonin-induced anti-catabolic effects in OA disease.
Collapse
Affiliation(s)
- Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yu-Han Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Hsi-Chin Wu
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Urology, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
16
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
17
|
Zheng L, Wen XL, Dai YC. Mechanism of Jianpi Qingchang Huashi Recipe in treating ulcerative colitis: A study based on network pharmacology and molecular docking. World J Clin Cases 2021; 9:7653-7670. [PMID: 34621817 PMCID: PMC8462257 DOI: 10.12998/wjcc.v9.i26.7653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a refractory intestinal disease with alternating onset and remission and a long disease course, which seriously affects the health and quality of life of patients. The goal of treatment is to control clinical symptoms, induce and maintain remission, promote mucosal healing, and reduce recurrence. Clinical trials have shown unsatisfactory clinical response rates. As a supplementary alternative medicine, traditional Chinese medicine has a rich history and has shown good results in the treatment of UC. Because of the quality of herbal medicine and other factors, the curative effect of traditional Chinese medicine is not stable enough. The mechanism underlying the effect of Jianpi Qingchang Huashi Recipe (JPQCHSR) on inducing UC mucosal healing is not clear. AIM To investigate the potential mechanism of JPQCHSR for the treatment of UC based on network pharmacology and molecular docking. METHODS Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to extract the active components and action targets of JPQCHSR, and the target names were standardized and corrected through UniProt database. The related targets of UC were obtained through GeneCards database, and the intersection targets of drugs and diseases were screened by jvenn online analysis tool. The visual regulatory network of "Traditional Chinese medicine-active components-target-disease" was constructed using Cytoscape software, the protein interaction network was constructed using STRING database, and enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways was conducted through R software. At last, the active components were docked with the core target through SYBYL-X 2.1.1 software. RESULTS Through database analysis, a total of 181 active components, 302 targets and 205 therapeutic targets were obtained for JPQCHSR. The key compounds include quercetin, luteolin, kaempferol, etc. The core targets involved STAT3, AKT1, TP53, MAPK1, MAPK3, JUN, TNF, etc. A total of 2861 items were obtained by GO enrichment analysis, and 171 items were obtained by KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis. The results of molecular docking showed that the key active components in JPQCHSR had certain affinity with the core target. CONCLUSION The treatment of UC with JPQCHSR is a complex process of multi-component, multi-target and multi-pathway regulation. The mechanism of this Recipe in the treatment of UC can be predicted through network pharmacology and molecular docking, so as to provide theoretical reference for it to better play its therapeutic role.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| |
Collapse
|
18
|
Kaempferol attenuates the effects of XIST/miR-130a/STAT3 on inflammation and extracellular matrix degradation in osteoarthritis. Future Med Chem 2021; 13:1451-1464. [PMID: 34120462 DOI: 10.4155/fmc-2021-0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To investigate whether kaempferol exhibited protective effects on osteoarthritis chondrocytes by modulating the XIST/miR-130a/STAT3 axis. Methods: qRT-PCR and western blot assays were used for gene and protein determination. Dual luciferase reporter and RNA immunoprecipitation assays were employed to study the interaction between miRNA and lncRNA or genes. Results: Kaempferol decreased proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Additionally, kaempferol ameliorated XIST expression and enhanced miR-130a expression. XIST interacted with miR-130a, and STAT3 was identified as a target of miR-130a. Knockdown of XIST expression suppressed proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Overexpression of STAT3 rescued the effects of XIST knockdown. Conclusion: Kaempferol inhibited inflammation and extracellular matrix degradation by modulating the XIST/miR-130a/STAT3 axis in chondrocytes.
Collapse
|
19
|
Li S, Hao M, Wu T, Wang Z, Wang X, Zhang J, Zhang L. Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis. Biomed Pharmacother 2021; 137:111419. [PMID: 33761622 DOI: 10.1016/j.biopha.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Atherosclerosis, inflammatory disease, is a major reason for cardiovascular diseases and stroke. Kaempferol (Kae) has been well-documented to have pharmacological activities in the previous studies. However, the detailed mechanisms by which Kae regulates inflammation, oxidative stress, and apoptosis in Human Umbilical Vein Endothelial Cells (HUVECs) remain unknown. METHODS AND RESULTS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure expression levels of circNOL12, nucleolar protein 12 (NOL12), miR-6873-3p, and Fibroblast growth factor receptor substrate 2 (FRS2) in HUVECs treated with either oxidized low-density lipoprotein (ox-LDL) alone or in combination with Kae. The cells viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. The inflammation and oxidative stress were assessed by checking inflammatory factors, Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) levels in ox-LDL-induced HUVECs. The apoptotic cells were quantified by flow cytometry assay. The western blot assay was used for measuring protein expression. The interaction relationship between miR-6873-3p and circNOL12 or FRS2 was analyzed by dual-luciferase reporter and RNA pull-down assays. Treatment with Kae could inhibit ox-LDL-induced the upregulation of circNOL12 in HUVECs. Importantly, Kae weakened ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs, which was abolished by overexpression of circNOL12. What's more, miR-6873-3p was a target of circNOL12 in HUVECs, and the upregulation of miR-6873-3p overturned circNOL12 overexpression-induced effects on HUVECs treated with ox-LDL and Kae. FRS2 was negatively regulated by miR-6873-3p in HUVECs. CONCLUSION Kae alleviated ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs by regulating circNOL12/miR-6873-3p/FRS2 axis.
Collapse
Affiliation(s)
- Shuangzhan Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Meihua Hao
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Taisheng Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zixuan Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xicheng Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Junjian Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
20
|
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants (Basel) 2021; 10:328. [PMID: 33672251 PMCID: PMC7926722 DOI: 10.3390/antiox10020328] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
It is now well established that polyphenols are a class of natural substance that offers numerous health benefits; they are present in all plants in very different quantities and types. On the other hand, their bioavailability, and efficacy is are not always well proven. Therefore, this work aims to discuss some types of polyphenols belonging to Mediterranean foods. We chose six polyphenols-(1) Naringenin, (2) Apigenin, (3) Kaempferol, (4) Hesperidin, (5) Ellagic Acid and (6) Oleuropein-present in Mediterranean foods, describing dietary source and their chemistry, as well as their pharmacokinetic profile and their use as nutraceuticals/supplements, in addition to the relevant element of their capability in modulating microRNAs expression profile.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
21
|
Gonda K, Suzuki K, Sunabe Y, Kono K, Takenoshita S. Ficus pumila L. improves the prognosis of patients infected with HTLV-1, an RNA virus. Nutr J 2021; 20:16. [PMID: 33573641 PMCID: PMC7877332 DOI: 10.1186/s12937-021-00672-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 was isolated as the retrovirus to be identified in humans. Here, we focused on Ficus pumila L. as a factor that be effective against human T-cell leukemia virus type 1. The significant and novel findings is that symptoms of patients with drinking Ficus pumila L. extracts did not worsen despite a lack of aggressive pharmacotherapy against adult T-cell leukemia, a human T-cell leukemia virus type 1-associated myelopathy, or T-cell leukemia virus type 1 uveitis. Twenty-eight of the 194 inpatients who underwent showed high levels of human T-cell leukemia virus type 1. Among human T-cell leukemia virus type 1-infected patients, those who were administered Ficus pumila L. extracts had no human T-cell leukemia virus type 1-related symptoms, while those who were not administered Ficus pumila L. extracts had human T-cell leukemia virus type 1-related diseases and a significantly poorer prognosis. This suggests that the Ficus pumila L. extracts may show some utility against virus infection.
Collapse
Affiliation(s)
- Kenji Gonda
- Daido Central Hospital, 1-1-37 Asato, Naha, Okinawa, 902-0067, Japan. .,Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Koichi Suzuki
- Daido Central Hospital, 1-1-37 Asato, Naha, Okinawa, 902-0067, Japan.,Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yumi Sunabe
- Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Koji Kono
- Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | | |
Collapse
|
22
|
Geng Y, Zuo P, Li XO, Zhang L. PODNL1 promotes cell proliferation and migration in glioma via regulating Akt/mTOR pathway. J Cancer 2020; 11:6234-6242. [PMID: 33033506 PMCID: PMC7532506 DOI: 10.7150/jca.46901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Aims: Emerging studies have determined that the small leucine-rich proteoglycan (SLRP) family can aggravate tumor progression. However, the biological function of podocan-like protein 1 (PODNL1), a novel member of the SLRP family, has not been investigated. Therefore, our study focused on the function and regulatory mechanism of PODNL1 in glioma. Methods: Both the Gene Expression Profiling Interactive Analysis (GEPIA) and the Chinese Glioma Genome Atlas (CGGA) database were used to analyze the expression level and survival risk of PODNL1 in glioma. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to detect the mRNA and protein expression, respectively. Celltiter-Glo and colony formation assays were used to evaluate cell proliferation. Migration capacity was measured by Transwell and wound healing assays. Flow cytometry was utilized to assess the apoptotic rate. Results: The expression of PODNL1 predicted the poor prognosis in glioma patients. Silencing of PODNL1 inhibited cell proliferation, migration, and induced epithelial-like phenotype. In addition, knockdown of PODNL1 also induced cell apoptosis. Moreover, the cell growth and migration inhibited by PODNL1 knockdown could be partially rescued with Akt activator. Conversely, PODNL1 overexpression promoted cell growth and migration, which were suppressed by Akt inhibitor. Conclusions: PODNL1, a promising predictive indicator of poor prognosis, resulted in greater proliferation, migration and epithelial-mesenchymal transition (EMT) process. Moreover, PODNL1 promoted aggressive glioma behavior by activating Akt/mTOR pathway, providing a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Zuo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| |
Collapse
|
23
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
24
|
Ullah S, Hussain SA, Shaukat F, Hameed A, Yang W, Song Y. Antioxidant Potential and the Characterization of Arachis hypogaea Roots. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7073456. [PMID: 31950051 PMCID: PMC6948283 DOI: 10.1155/2019/7073456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/27/2019] [Accepted: 11/27/2019] [Indexed: 02/03/2023]
Abstract
Arachis hypogaea roots are used as traditional Chinese medicine to treat different ailments, and the present study involves the exploration and comparison of phenolic profile and antioxidant activities (ABTS+ and DPPH assay) of A. hypogaea root extract in different solvents. 70% aqueous acetone and 70% aqueous ethanol were proved to be the best solvents to recover total phenolic compounds, with a yield of 42.59 ± 1.96 and 41.34 ± 0.92 mg/g dry weight of extract, respectively. ABTS+ radical scavenging activity was the highest in 70% aqueous ethanol, while the absolute methanol extract showed the highest DPPH radical scavenging activity (29.50 ± 2.19 μg/mL). Furthermore, phytochemical profiling of 70% acetone extract of A. hypogaea roots was performed by LC-ESI-TOF-MS analysis which in turn indicated the presence of diverse compounds in the A. hypogaea root extract, namely, quinones, stilbenoids, and flavones and flavonoid glucosides.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Syed Ammar Hussain
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Ahsan Hameed
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- Clinical Research Center, Medical University of Bialystok, Bialystok 15-001, Poland
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
25
|
Li J, Di L, Cheng X, Ji W, Piao H, Cheng G, Zou M. The characteristics and mechanism of co-administration of lovastatin solid dispersion with kaempferol to increase oral bioavailability. Xenobiotica 2019; 50:593-601. [PMID: 31505985 DOI: 10.1080/00498254.2019.1662136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lovastatin shows low bioavailability (lower than 5%) after oral administration because of the poor aqueous solubility and widely metabolized by CYP3A4.Lovastatin solid dispersion was designed to enhance the dissolution. The in vitro intestinal absorption study indicated an increase in the apparent permeability of different intestinal segments compared with crude lovastatin. In the range of 12.5-50 μg/ml, the absorption of both lovastatin and lovastatin solid dispersion were found to be a passive process in rat's jejunum and ileum, but not endocytosis process. CYP3A4 inhibitor (ketoconazole) significantly increased the intestinal absorption of lovastatin and lovastatin solid dispersion. However, P-glycoprotein efflux inhibitor (verapamil) had little effect on them.The absolute bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion were increased by about 2.01-fold and 1.40-fold than that of lovastatin suspension. The oral bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion with 10 mg/kg kaempferol (CYP3A4 inhibitor) were increased about 3.79-fold and 2.51-fold than that of lovastatin suspension, and the absolute bioavailability of lovastatin was up to 33.0%.As a result, co-administration of lovastatin solid dispersion with kaempferol could be a promising delivery system to improve the oral bioavailability of lovastatin.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Liuying Di
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,STA Pharmaceutical Co., LTD, Shanghai, China
| | - Xu Cheng
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiwen Ji
- Pharmaceutical Engineering College, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyu Piao
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Cheng
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meijuan Zou
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|