1
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Ren J, Marahleh A, Ma J, Ohori F, Noguchi T, Fan Z, Hu J, Narita K, Lin A, Kitaura H. Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation. Biomedicines 2025; 13:426. [PMID: 40002839 PMCID: PMC11853621 DOI: 10.3390/biomedicines13020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objective: Osteocytes are the most abundant cell type in the skeleton, with key endocrine functions, particularly in regulating osteoblast and osteoclast activity to maintain bone quality. Angiotensin II (Ang II), a critical component of the renin-angiotensin-aldosterone system, is well-known for its role in vasoconstriction during hypertension. Beyond its cardiovascular functions, Ang II participates in various biological processes, including bone metabolism. While its influence on osteoblast proliferation, differentiation, and osteoclastogenesis has been documented, its effects on osteocytes remain unexplored. This study hypothesized that Ang II enhances the osteoclastogenic activity of osteocytes. Methods: Mouse calvariae were cultured ex vivo in an Ang II-containing medium, analyzed via immunohistochemistry, and evaluated for osteoclastogenic gene expression through real-time PCR. Western blotting was employed to assess protein levels and signaling pathway activation in the MLO-Y4 osteocytic cell line in vitro. Results: Ang II significantly increased the expression of receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). These effects were abrogated by azilsartan, a blocker targeting Ang II type 1 receptors (AT1R). p38 and ERK1/2 in the MAPK pathway were also activated by Ang II. Conclusions: Ang II enhances osteocyte-mediated osteoclastogenesis via AT1R activation, highlighting its potential as a therapeutic target for bone diseases.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Aseel Marahleh
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Jinghan Ma
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Fumitoshi Ohori
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Takahiro Noguchi
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Ziqiu Fan
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Jin Hu
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Kohei Narita
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Angyi Lin
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Hideki Kitaura
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| |
Collapse
|
3
|
Huang Y, Ye J. Association between hypertension and osteoporosis: a population-based cross-sectional study. BMC Musculoskelet Disord 2024; 25:434. [PMID: 38831414 PMCID: PMC11149290 DOI: 10.1186/s12891-024-07553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Current evidence suggests that metabolic dysregulation is inextricably linked to both hypertension and osteoporosis, but the correlation between hypertension and osteoporosis is still unclear. Therefore, in this study, we explored the correlation between hypertension and osteoporosis. METHODS A total of 37,807 participants from the National Health and Nutrition Examination Survey (1999-2010, 2013-2014, 2017-2018) were enrolled in this population-based cross-sectional study. Hypertension was considered an exposure factor and osteoporosis was considered an outcome factor. Logistic regression and subgroup analysis were used to assess the association between hypertension and osteoporosis. RESULTS A total of 2,523 participants, with a mean age of 68.65 ± 12.21 years, suffered from osteoporosis, and 86.2% were female. Participants with osteoporosis had a greater prevalence of hypertension than participants without osteoporosis (p < 0.001). Participants with hypertension also had a greater prevalence of osteoporosis than participants without hypertension (p < 0.001). Univariate logistic regression analysis indicated that hypertension was associated with osteoporosis (OR: 2.693, 95% CI: 2.480-2.924, p < 0.001). Multivariate logistic regression analysis with a fully adjusted model indicated that hypertension was strongly associated with osteoporosis (OR: 1.183, 95% CI: 1.055-1.327, p = 0.004). Subgroup analysis revealed that the associations between hypertension and osteoporosis were significant in the younger than 60 years, male sex, diabetes subgroup and hypercholesterolemia subgroup (p < 0.05). CONCLUSION Hypertension was independently associated with osteoporosis in the general population.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Orthopedic, Huaian Hospital of Huaian City, No.19, Shanyang Avenue, Huaian District, Huaian, 223200, China
| | - Jianya Ye
- Department of Orthopedic, Huaian Hospital of Huaian City, No.19, Shanyang Avenue, Huaian District, Huaian, 223200, China.
| |
Collapse
|
4
|
Guo Y, Guo K, Hu T, Wu D. Correlation between serum angiotensin-converting enzyme (ACE) levels and intervertebral disc degeneration. Peptides 2022; 157:170867. [PMID: 36055434 DOI: 10.1016/j.peptides.2022.170867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 10/31/2022]
Abstract
Studies have shown that the renin-angiotensin system (RAS) might play an essential role in intervertebral disc degeneration (IDD). The study aimed to investigate the relationship between serum angiotensin-converting enzyme (ACE) concentration and IDD and its predictive value for severe disc degeneration. 245 patients who came to our hospital for low back pain were recruited, and blood samples were collected for routine examination. Descriptive data and demographic parameters were collected. The cumulative grade 1 was calculated by summing up the Pfirrmann grade of all lumbar discs. ACE concentration grouping was determined via tertile split. Correlation analysis and multivariable linear regression analysis were performed to determine the relationship between ACE and IDD. The receiver's degree of disc degeneration (ROC) curve determined the ACE's predictive value. Results indicated that there was no significant difference in demographic parameters among groups. Correlation analysis and multivariate linear analysis showed that ACE was an independent risk factor for IDD. The cumulative grade 1 increased significantly with the increase in ACE concentration, which was consistent with the correlation analysis. Average Pfirrmann grade < 4 indicates mild to moderate degeneration, and grade ≥ 4 indicates severe degeneration in terms of an individual disc. From L1/2 to L5/S1, the mean plasma ACE concentration was significantly higher in the severe degeneration group than in the mild to moderate degeneration group. According to the ROC curve, the cut-off value of ACE levels was 22.5. patients with ACE > 22.5 had severe degeneration. The sensitivity and specificity were 0.762 and 0.521, respectively.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Zhao J, He W, Zheng H, Zhang R, Yang H. Bone Regeneration and Angiogenesis by Co-transplantation of Angiotensin II-Pretreated Mesenchymal Stem Cells and Endothelial Cells in Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Transplant 2022; 31:9636897221086965. [PMID: 35313737 PMCID: PMC8943589 DOI: 10.1177/09636897221086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on
osteonecrosis of the femoral head (ONFH) in preclinical experiments and clinical
trials. After the femoral head suffers avascular necrosis, the transplanted MSCs
undergo a great deal of stress-induced apoptosis and senescence in this
microenvironment. So, survival and differentiation of MSCs in osteonecrotic
areas are especially important in ONFH. Although MSCs and endothelial cells
(ECs) co-culture enhancing proliferation and osteogenic differentiation of MSCs
and form more mature vasculature in vivo, it remains unknown
whether the co-culture cells are able to repair ONFH. In this study, we explored
the roles and mechanisms of co-transplantation of angiotensin II (Ang II)-MSCs
and ECs in repairing early ONFH. In vitro, when MSCs and ECs
were co-cultured in a ratio of 5:1, both types of cells managed to proliferate
and induce both osteogenesis and angiogenesis. Then, we established a rabbit
model of steroid-induced ONFH and co-transplantation of Ang II-MSCs and ECs
through the tunnel of core decompression. Four weeks later, histological and
Western blot analyses revealed that ONFH treated with Ang II-MSCs and ECs may
promote ossification and revascularization by increasing the expression of
collagen type I, runt-related transcription factor 2, osteocalcin, and vascular
endothelial growth factor in the femoral head. Our data suggest that
co-transplantation of Ang II-MSCs and ECs was able to rescue the early
steroid-induced ONFH via promoting osteogenesis and angiogenesis, which may be
regarded as a novel therapy for the treatment of ONFH in a clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wei He
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hongqing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Balera Brito VG, Patrocinio MS, Alves Barreto AE, Tfaile Frasnelli SC, Lara VS, Santos CF, Penha Oliveira SH. Telmisartan impairs the in vitro osteogenic differentiation of mesenchymal stromal cells from spontaneously hypertensive male rats. Eur J Pharmacol 2021; 912:174609. [PMID: 34743978 DOI: 10.1016/j.ejphar.2021.174609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
Telmisartan (TELM) is an angiotensin II (Ang II) type 1 receptor (Agtr1) antagonist, with partial agonism for Pparg, and has been shown to affect bone metabolism. Therefore, the aim of this study was to investigate the effects of TELM in the in vitro osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSC) from spontaneously hypertensive rats (SHRs). BMSC were obtained from male SHR, and the osteogenic medium (OM) was added to the cells concomitantly with TELM (0.005, 0.05, and 0.5 μM). Undifferentiated BMSC, in control medium (CM), showed an increased viability, while the addition of OM reduced this parameter, and TELM did not show cytotoxicity in the concentrations used. BMSC in OM had an alkaline phosphatase (ALP) activity peak at d10, which decreased at d14 and d21, and TELM reduced ALP at d10 in a dose-dependent manner. Mineralization was observed in the OM at d14, which intensified at d21, but was inhibited by TELM. Agtr1b was increased in the OM, and TELM inhibited its expression. TELM reduced Opn, Ocn, and Bsp and increased Pparg expression, and at the higher concentration TELM also increased the expression of adipogenic markers, Fabp4 and Adipoq. In addition, TELM 0.5 μM increased Irs1 and Glut4, insulin and glucose metabolism markers, known to be regulated by Pparg and to be related to adipogenic phenotype. Our data shows that TELM inhibited the osteogenic differentiation and mineralization of SHR BMSC, by favoring an adipogenic prone phenotype due to Pparg upregulation.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| |
Collapse
|
7
|
Carlos CP, de Carvalho EP, Angeli Junior EV, Garcia Filho GF, Doná JPL, Batanero RPDO, Guena RDO, Agren C, Baptista MASF, Bizotto TSG, Cury PM, Chies AB. Angiotensin involvement in kidney injury induced by rheumatoid arthritis in rat. Clin Exp Pharmacol Physiol 2021; 48:1271-1279. [PMID: 34037987 DOI: 10.1111/1440-1681.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Renal injury induced by rheumatoid arthritis is not clear and may be related to the angiotensin II. We aim to investigate the adjuvant-induced arthritis (AIA) injury in rat kidney, focusing the angiotensin II/AT1 pathway. Male Wistar rats were allocated in to three groups: Control, AIA and AIA plus losartan. The AIA was induced by injection of 100 µL of an emulsion of dissected Mycobacterium tuberculosis (50 mg/mL) on the paw. Treatment with losartan was initiated on the first day of immunization (daily subcutaneous injection, 1 mg/kg). After 60 days post immunization, we evaluated kidney function by plasma creatinine, urea and uric acid levels and creatinine depuration; kidney injury by apoptosis analysis and inflammation markers such as macrophages, transforming growth factor beta (TGF-β) and inducible nitric oxide synthase (iNOS) expression; oxidative stress by plasma thiobarbituric acid reactive substances (TBARS); renal expression of angiotensin receptors subtype 1 (AT1 ) and 2 (AT2 ) and plasma concentration of angiotensin II. AIA rats showed elevated plasma levels of creatinine, urea, uric acid, TBARS and Ang II and reduced creatinine depuration, and enhanced kidney macrophage number, TGF-β, caspase-3, iNOS and AT1 /AT2 receptors expression. The losartan reduced plasma creatinine and its clearance, reduced macrophages and the expression of TGF-β and iNOS in renal tissues, and reduced plasma TBARS. We conclude that AIA causes kidney injury by a physiopathological mechanism that involves AT1 stimulation in renal tissue, elevating the presence of macrophages, the expression of TGF-β and iNOS, as well the local oxidative stress, which contribute to renal function deterioration.
Collapse
Affiliation(s)
- Carla Patrícia Carlos
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Enzo Prandi de Carvalho
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | | | - João Pedro Lot Doná
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | - Rafael de Oliveira Guena
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Camila Agren
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | | | - Patricia Maluf Cury
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Agnaldo Bruno Chies
- Laboratory of Pharmacology, Marília Medical School, FAMEMA, São Paulo, Marília, Brazil
| |
Collapse
|
8
|
Zhao Z, Wang C, Xu Y, Wang X, Jia B, Yu T, Wang Y, Zhang Y. Effects of the Local Bone Renin-Angiotensin System on Titanium-Particle-Induced Periprosthetic Osteolysis. Front Pharmacol 2021; 12:684375. [PMID: 34248634 PMCID: PMC8264785 DOI: 10.3389/fphar.2021.684375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Wear particles may induce osteoclast formation and osteoblast inhibition that lead to periprosthetic osteolysis (PPOL) and subsequent aseptic loosening, which is the primary reason for total joint arthroplasty failure. Local bone renin-angiotensin system (RAS) has been found to participate in the pathogenic process of various bone-related diseases via promoting bone resorption and inhibiting bone formation. However, it remains unclear whether and how local bone RAS participates in wear-particle-induced PPOL. In this study, we investigated the potential role of RAS in titanium (Ti) particle-induced osteolysis in vivo and osteoclast and osteoblast differentiation in vitro. We found that the expressions of AT1R, AT2R and ACE in the interface membrane from patients with PPOL and in calvarial tissues from a murine model of Ti-particle-induced osteolysis were up-regulated, but the increase of ACE in the calvarial tissues was abrogated by perindopril. Moreover, perindopril mitigated the Ti-particle-induced osteolysis in the murine model by suppressing bone resorption and increasing bone formation. We also observed in RAW264.7 macrophages that Ang II promoted but perindopril suppressed Ti-particle-induced osteoclastogenesis, osteoclast-mediated bone resorption and expression of osteoclast-related genes. Meanwhile, Ang II enhanced but perindopril repressed Ti-particle-induced suppression of osteogenic differentiation and expression of osteoblast-specific genes in mouse bone marrow mesenchymal stem cells (BMSCs). In addition, local bone RAS promoted Ti-particle-induced osteolysis by increasing bone resorption and decreasing bone formation through modulating the RANKL/RANK and Wnt/β-catenin pathways. Taken together, we suggest that inhibition of RAS may be a potential approach to the treatment of wear-particle-induced PPOL.
Collapse
Affiliation(s)
- Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxing Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Bin Jia
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingzhen Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Garbieri TF, Martin V, Santos CF, Gomes PDS, Fernandes MH. The Embryonic Chick Femur Organotypic Model as a Tool to Analyze the Angiotensin II Axis on Bone Tissue. Pharmaceuticals (Basel) 2021; 14:ph14050469. [PMID: 34065702 PMCID: PMC8157202 DOI: 10.3390/ph14050469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 01/22/2023] Open
Abstract
Activation of renin–angiotensin system (RAS) plays a role in bone deterioration associated with bone metabolic disorders, via increased Angiotensin II (AngII) targeting Angiotensin II type 1 receptor/Angiotensin II type 2 receptor (AT1R/AT2R). Despite the wide data availability, the RAS role remains controversial. This study analyzes the feasibility of using the embryonic chick femur organotypic model to address AngII/AT1R/AT2R axis in bone, which is an application not yet considered. Embryonic day-11 femurs were cultured ex vivo for 11 days in three settings: basal conditions, exposure to AngII, and modulation of AngII effects by prior receptor blockade, i.e., AT1R, AT2R, and AT1R + AT2R. Tissue response was evaluated by combining µCT and histological analysis. Basal-cultured femurs expressed components of RAS, namely ACE, AT1R, AT2R, and MasR (qPCR analysis). Bone formation occurred in the diaphyseal region in all conditions. In basal-cultured femurs, AT1R blocking increased Bone Surface/Bone Volume (BS/BV), whereas Bone Volume/Tissue Volume (BV/TV) decreased with AT2R or AT1R + AT2R blockade. Exposure to AngII greatly decreased BV/TV compared to basal conditions. Receptor blockade prior to AngII addition prevented this effect, i.e., AT1R blockade induced BV/TV, whereas blocking AT2R caused lower BV/TV increase but greater BS/BV; AT1R + AT2R blockade also improved BV/TV. Concluding, the embryonic chick femur model was sensitive to three relevant RAS research setups, proving its usefulness to address AngII/AT1R/AT2R axis in bone both in basal and activated conditions.
Collapse
Affiliation(s)
- Thais Francini Garbieri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo 17012-901, Brazil; (T.F.G.); (C.F.S.)
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (P.d.S.G.)
| | - Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (P.d.S.G.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo 17012-901, Brazil; (T.F.G.); (C.F.S.)
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (P.d.S.G.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (P.d.S.G.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
10
|
Murray JB, Mikhael C, Han G, de Faria LP, Rody WJ, Holliday LS. Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts. Sci Rep 2021; 11:9214. [PMID: 33911158 PMCID: PMC8080643 DOI: 10.1038/s41598-021-88665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.
Collapse
Affiliation(s)
- Jonathan B Murray
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Christy Mikhael
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, 01000, Brazil
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, 11794, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL, 23610, USA.
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 1000444, Gainesville, FL, 23610, USA.
| |
Collapse
|
11
|
Impact of renin-angiotensin system inhibitors and beta-blockers on dental implant stability. Int J Implant Dent 2021; 7:31. [PMID: 33829330 PMCID: PMC8026804 DOI: 10.1186/s40729-021-00309-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current experimental research suggests antihypertensive medication reduces the failure risk of dental implants due to enhanced bone remodeling. However, evidence from clinical studies evaluating the impact of antihypertensive medication on implant stability is lacking. METHODS We retrospectively analyzed 377 implants in 196 patients (46 implants inserted in antihypertensive drug users (AH) and 331 implants in non-users (NAH)) for implant stability measured by radiofrequency analysis, and we determined the implant stability quotient (ISQ). AH subgroups were stratified by the use of beta-blockers, renin-angiotensin system (RAS) inhibitors, and both of the aforementioned. The impact of antihypertensive medication on ISQ values at implant insertion (primary stability) and implant exposure (secondary stability) was analyzed by a linear regression model with a regression coefficient and its 95% confidence interval (95% CI), adjusted for potential confounders. RESULTS Time between implant insertion and implant exposure was 117.1 ± 56.6 days. ISQ values at insertion were 71.8 ± 8.7 for NAH and 74.1 ± 5.6 for AH, respectively. ISQ at exposure was 73.7 ± 8.1 for NAH and 75.7 ± 5.9 for AH. Regression analysis revealed that none of the AH subgroups were significantly related to ISQ at implant insertion. However, renin-angiotensin system inhibitors (RAS) were significantly associated with higher ISQ values at exposure (reg. coeff. 3.59, 95% CI 0.46-6.71 (p=0.025)). CONCLUSIONS Outcome of the present study indicates enhanced bone remodeling and osseointegration following dental implant insertion in patients taking RAS inhibitors than in non-users. Future randomized prospective studies must confirm these indicative results.
Collapse
|
12
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
13
|
Akagi T, Mukai T, Mito T, Kawahara K, Tsuji S, Fujita S, Uchida HA, Morita Y. Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int J Mol Sci 2020; 21:ijms21114145. [PMID: 32532031 PMCID: PMC7312645 DOI: 10.3390/ijms21114145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) is the main effector peptide of the renin-angiotensin system (RAS), which regulates the cardiovascular system. The RAS is reportedly also involved in bone metabolism. The upregulation of RAS components has been shown in arthritic synovial tissues, suggesting the potential involvement of Ang II in arthritis. Accordingly, in the present study, we investigated the role of Ang II in bone erosion and systemic bone loss in arthritis. Ang II was infused by osmotic pumps in tumor necrosis factor-transgenic (TNFtg) mice. Ang II infusion did not significantly affect the severity of clinical and histological inflammation, whereas bone erosion in the inflamed joints was significantly augmented. Ang II administration did not affect the bone mass of the tibia or vertebra. To suppress endogenous Ang II, Ang II type 1 receptor (AT1R)-deficient mice were crossed with TNFtg mice. Genetic deletion of AT1R did not significantly affect inflammation, bone erosion, or systemic bone loss. These results suggest that excessive systemic activation of the RAS can be a risk factor for progressive joint destruction. Our findings indicate an important implication for the pathogenesis of inflammatory bone destruction and for the clinical use of RAS inhibitors in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
- Correspondence: ; Tel.: +81-86-462-1111
| | - Takafumi Mito
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Kyoko Kawahara
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shoko Tsuji
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shunichi Fujita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0914, Japan;
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| |
Collapse
|