1
|
Zeng L, Wang Y, Shen J, Wei X, Wu Y, Chi X, Zheng X, Yu X, Shi Y, Liu W. TIPE2 aggravates experimental colitis and disrupts intestinal epithelial barrier integrity by activating JAK2/STAT3/SOCS3 signal pathway. Exp Cell Res 2024; 443:114287. [PMID: 39426612 DOI: 10.1016/j.yexcr.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing and progressive inflammatory disease of the colon. TIPE2 is a negative regulator of innate and adaptive immunity that maintains immune homeostasis. We found that TIPE2 was highly expressed in mucosa of mice with colitis. However, the role of TIPE2 in colitis remains unclear. We induced colitis in mice with dextran sulfate sodium (DSS) and treated them with TIPE2, and investigated the inflammatory activity of the colon in vivo by cytokines detection and histopathological analyses. We also measured inflammatory alteration and tight junctions induced by DSS in vitro. The results demonstrated that administration of TIPE2 promoted the severity of colitis in mice and human colon epithelial cells. Furthermore, TIPE2 aggravated intestinal epithelial barrier dysfunction by decreasing the expression of the tight junction proteins Occludin, Claudin-1 and ZO-1. In addition, TIPE2 exacerbated intestinal inflammatory response by inhibiting the expression of SOCS3, remarkably activating JAK2/STAT3 signaling pathway, and increasing the translocation of phosphorylated STAT3 into the nucleus. Silencing of TIPE2 attenuated the DSS-induced activation of JAK2/STAT3, thereby rescuing epithelial inflammatory injury and restoring barrier dysfunction. These results indicate that TIPE2 augments experimental colitis and disrupted the integrity of the intestinal epithelial barrier by activating the JAK2/STAT3/SOCS3 signaling pathway.
Collapse
Affiliation(s)
- Lingli Zeng
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuping Wang
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaxin Shen
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xujin Wei
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yilong Wu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xintong Chi
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xueyan Zheng
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xing Yu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Shi
- Department of Gastroenterology, The First Afiiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Wenming Liu
- Endoscopy Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Endoscopy Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Guo P, Gao X, Nelson AL, Huard M, Lu A, Hambright WS, Huard J. TIPE2 gene transfer ameliorates aging-associated osteoarthritis in a progeria mouse model by reducing inflammation and cellular senescence. Mol Ther 2024; 32:3101-3113. [PMID: 39095992 PMCID: PMC11403236 DOI: 10.1016/j.ymthe.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Osteoarthritis (OA) pain is often associated with the expression of tumor necrosis factor alpha (TNF-α), suggesting that TNF-α is one of the main contributing factors that cause inflammation, pain, and OA pathology. Thus, inhibition of TNF-α could potentially improve OA symptoms and slow disease progression. Anti-TNF-α treatments with antibodies, however, require multiple treatments and cannot entirely block TNF-α. TNF-α-induced protein 8-like 2 (TIPE2) was found to regulate the immune system's homeostasis and inflammation through different mechanisms from anti-TNF-α therapies. With a single treatment of adeno-associated virus (AAV)-TIPE2 gene delivery in the accelerated aging Zmpste24-/- (Z24-/-) mouse model, we found differences in Safranin O staining intensity within the articular cartilage (AC) region of the knee between TIPE2-treated mice and control mice. The glycosaminoglycan content (orange-red) was degraded in the Z24-/- cartilage while shown to be restored in the TIPE2-treated Z24-/- cartilage. We also observed that chondrocytes in Z24-/- mice exhibited a variety of senescent-associated phenotypes. Treatment with TIPE2 decreased TNF-α-positive cells, β-galactosidase (β-gal) activity, and p16 expression seen in Z24-/- mice. Our study demonstrated that AAV-TIPE2 gene delivery effectively blocked TNF-α-induced inflammation and senescence, resulting in the prevention or delay of knee OA in our accelerated aging Z24-/- mouse model.
Collapse
Affiliation(s)
- Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
| | - Xueqin Gao
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Anna-Laura Nelson
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - William Sealy Hambright
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
| |
Collapse
|
4
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
DU Y, Liu X, Xiao C, Li J, Sheng Z, Wang Y, Wang R, Yu X. TIPE2 regulates periodontal inflammation by inhibiting NF-κB p65 phosphorylation. J Appl Oral Sci 2023; 31:e20230162. [PMID: 37493703 PMCID: PMC10382077 DOI: 10.1590/1678-7757-2023-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The roles and molecular mechanisms of tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) in periodontitis remain largely unknown. OBJECTIVE This study aimed to determine the expression of TIPE2 and NF-κB p65 in rat Porphyromonas gingivalis-induced periodontics in vivo. METHODOLOGY Periodontal inflammation and alveolar bone resorption were analyzed using western blotting, micro-computed tomography, TRAP staining, immunohistochemistry, and immunofluorescence. THP-1 monocytes were stimulated using 1 μg/ml Pg. lipopolysaccharide (Pg.LPS) to determine the expression of TIPE2 in vitro. TIPE2 mRNA was suppressed by siRNA transfection, and the transfection efficiency was proven using western blotting and real-time PCR. The NF-κB pathway was activated by treating the cells with 1 μg/ml Pg.LPS to explore related mechanisms. RESULTS The expression of both TIPE2 and NF-κB p65 was increased in the gingival tissues of rat periodontitis compared with normal tissues. Positive expression of TIPE2 was distributed in inflammatory infiltrating cells and osteoclasts in the marginal lacunae of the alveolar bone. However, strong positive expression of TIPE2 in THP-1 was downregulated after Pg.LPS stimulation. TIPE2 levels negatively correlated with TNF-α and IL-1β. Decreased TIPE2 in THP-1 further promoted NF-κB p65 phosphorylation. Mechanistically, TIPE2 knockdown upregulated NF-κB signaling pathway activity. CONCLUSIONS Taken together, these findings demonstrate that TIPE2 knockdown aggravates periodontal inflammatory infiltration via NF-κB pathway. Interventions aimed at increasing TIPE2 may help in the therapeutic applications for periodontitis.
Collapse
Affiliation(s)
- Yanmei DU
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Xiaohua Liu
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Changjie Xiao
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| | - Jianbin Li
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Zhenxian Sheng
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Yuxin Wang
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
- Binzhou Medical College, School of Stomatology, Shandong, China
| | - Ronglin Wang
- Jinan Stamotological Hospital, Department of Prosthodontics, Shandong Province, China
| | - Xijiao Yu
- Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Central Laboratory, Department of Endodontics, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Province, China
| |
Collapse
|
6
|
TIPE2 Inhibits MGD Inflammation by Regulating Macrophage Polarization. J Pers Med 2023; 13:jpm13030492. [PMID: 36983674 PMCID: PMC10051090 DOI: 10.3390/jpm13030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Background: The aim of this study was to decide the role of the polarization of macrophages regulated by tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (TIPE2) in meibomian gland dysfunction (MGD). Methods: Firstly, the secretory function of the meibomian gland (MG) in apolipoprotein E knockout (ApoE-/-) MGD mice and normal mice was detected by oil red staining. Then, the expression levels of markers of M1 and M2 macrophages were detected by immunofluorescence staining in MGD, normal mice, and mild and severe MGD corpses to decide the role of M1 and M2 macrophages in MGD inflammation. Meanwhile, the expression levels of TIPE2 in MGD mice and MGD patients were detected by immunofluorescence staining, and the correlations among TIPE2, M1 and M2 macrophages were analyzed by immunofluorescence double staining in MGD mice and MGD patients. Furthermore, lipopolysaccharide (LPS) and interleulkin-4 (IL-4) were used to induce M1 and M2 polarization of macrophages, and the mRNA level of TIPE2 was detected in M1 and M2 macrophages. Results: Oil red staining showed that eyelid fat congestion was more severe in (ApoE-/-) MGD mice than in normal mice, and the M1 macrophage was the primary inflammatory cell infiltrated in (ApoE-/-) MGD mice (p < 0.05). The results of the immunofluorescence staining showed that the infiltration of macrophages in MGD mice was more obvious than that in the normal group, and M1 macrophage was the dominant group (p < 0.05). Similar to the results of the MGD mouse model, more macrophage infiltration was observed in MGD patients’ MG tissues, and there were more M1 cells in the severe group than in the mild group (p < 0.05). Moreover, the expression of TIPE2 was positively correlated with the expression of M2 macrophages in MGD patients and mice MG tissues (p < 0.05). The expression of TIPE2 mRNA in LPS-induced M1 macrophages declined, while the expression of TIPE2 mRNA in IL-4-induced M2 macrophages increased (p < 0.05). Conclusion: M1 macrophage was the dominant group infiltrated in the MG tissue of MGD, and TIPE2 is a potential anti-inflammatory target for preventing the development of MGD by promoting the M2 polarization of macrophages.
Collapse
|
7
|
Jian R, He X. TIPE2 knockdown exacerbates isoflurane-induced postoperative cognitive impairment in mice by inducing activation of STAT3 and NF-κB signaling pathways. Transl Neurosci 2023; 14:20220282. [PMID: 37069964 PMCID: PMC10105556 DOI: 10.1515/tnsci-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Objective Anesthetic exposure causes learning and memory impairment, the mechanisms of which remain unknown. It has been reported that tumor necrosis factor-α-inducer protein 8-like 2 (TIPE2) is a newly discovered immune negative regulator that is essential for maintaining immune homeostasis. This study aimed to examine the role of TIPE2 in isoflurane-induced postoperative cognitive decline (POCD). Methods An AAV empty vector and AAV shTIPE2 vector for the knockdown of TIPE2 were injected into the dorsal hippocampus of mice. Mice were continuously exposed to 1.5% isoflurane followed by abdominal exploration. Behavioral tests including the open field test and fear conditioning test were performed on the third and fourth day post-operation. Apoptosis was detected by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining. The kits were used to detect the activity of antioxidant enzymes. Inflammatory cytokine levels were detected by enzyme-linked immunosorbent assay. Signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) signaling pathway activities were detected by western blotting. Results TIPE2 expression increased after isoflurane anesthesia and surgery. TIPE2 deficiency aggravated cognitive impairment in mice and further caused apoptosis and oxidative stress in hippocampal neurons. TIPE2 deficiency induced microglial activation and increased secretion of proinflammatory cytokines. In addition, TIPE2 deficiency promoted STAT3 and NF-κB signaling activation induced by isoflurane anesthesia and after surgery. Conclusion TIPE2 may play a neuroprotective role in POCD by regulating STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Rui Jian
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| |
Collapse
|
8
|
Tumor Necrosis Factor-α-Induced Protein 8-Like 2 Ameliorates Cardiac Hypertrophy by Targeting TLR4 in Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9469143. [PMID: 35528518 PMCID: PMC9072033 DOI: 10.1155/2022/9469143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
Background Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been reported to regulate inflammation and apoptosis. The role of TIPE2 in cardiovascular disease, especially cardiac hypertrophy, has not been elucidated. Thus, the aim of the present study was to explore the role of TIPE2 in cardiac hypertrophy. Methods Mice were subjected to aortic banding (AB) to induce an adverse hypertrophic model. To overexpress TIPE2, mice were injected with a lentiviral vector expressing TIPE2. Echocardiographic and hemodynamic analyses were used to evaluate cardiac function. Neonatal rat cardiomyocytes (NRCMs) and mouse peritoneal macrophages (MPMs) were isolated and stimulated with angiotensin II. NRCMs and MPM were also cocultured and stimulated with angiotensin II. Cells were transfected with Lenti-TIPE2 to overexpress TIPE2. Results TIPE2 expression levels were downregulated in hypertrophic mouse hearts and in macrophages in heart tissue. TIPE2 overexpression attenuated pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, we found that TIPE2 overexpression in neonatal cardiomyocytes did not relieve the angiotensin II-induced hypertrophic response in vitro. Furthermore, TIPE2 overexpression downregulated TLR4 and NF-κB signaling in macrophages but not in cardiomyocytes, which led to diminished inflammation in macrophages and consequently reduced the activation of hypertrophic Akt signaling in cardiomyocytes. TLR4 inhibition by TAK-242 did not enhance the antihypertrophic effect of TIPE2 overexpression. Conclusions The present study indicated that TIPE2 represses macrophage activation by targeting TLR4, subsequently inhibiting cardiac hypertrophy.
Collapse
|
9
|
Up-regulating TIPE2 alleviates inflammatory pain by suppressing microglial activation-mediated inflammatory response via inhibiting Rac1/NF-κB pathway. Exp Cell Res 2021; 404:112631. [PMID: 33933441 DOI: 10.1016/j.yexcr.2021.112631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
TNF-α-inducible protein 8-like 2 (TIPE2) is a recently discovered regulator of inflammation that can maintain immune homeostasis, exerting a significant role in the development of inflammation-related diseases. Here, we aimed to explore the role and potential regulatory mechanism of TIPE2 in the progression of inflammatory pain. In the present study, a mouse BV2 microglia cell activation-mediated inflammatory model was developed with LPS induction, and a mouse inflammatory pain model was established with complete Freund's adjuvant (CFA) injection. In vitro, the TIPE2 expression was decreased in LPS-induced BV2 cells. Overexpression of TIPE2 mitigated LPS-medicated microglial activation via decreasing nitric oxide (NO) generation and the expression of microglia marker IBA-1. Notably, increasing TIPE2 expression alleviated microglial activation-triggered expression levels and releases of proinflammatory factors such as TNF-α, IL-1β, and IL-6. Mechanism analysis verified that overexpression of TIPE2 blunted Rac1-mediated activation of NF-κB pathway following LPS stimulation. More importantly, CFA injection reduced the expression of TIPE2 in a mouse inflammatory pain model and overexpression of TIPE2 alleviated CFA-mediated pain hypersensitivity and inflammatory response, and inactivated microglia cell in vivo. Furthermore, overexpression of TIPE2 decreased Rac1 expression and suppressed the activation of NF-κB pathway in spinal cord after CFA injection. In summary, the present study revealed that overexpression of TIPE2 mitigated inflammatory pain through suppressing microglial activation-induced inflammation by inactivating Rac1/NF-κB pathway. The study provides a novel theoretical foundation for the therapy of inflammatory pain.
Collapse
|
10
|
Cong L, Xie X, Liu S, Xiang L, Zhang Y, Cao J, Fu X. 7-Difluoromethoxy-5,4'-dimethoxy-genistein attenuates macrophages apoptosis to promote plaque stability via TIPE2/TLR4 axis in high fat diet-fed ApoE -/- mice. Int Immunopharmacol 2021; 96:107477. [PMID: 33813367 DOI: 10.1016/j.intimp.2021.107477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Promoting plaque stability is of great significance for prevention and treatment of cardiovascular diseases. 7-difluoromethoxy-5,4'-dimethoxygenistein (DFMG) is a novel active compound synthesized using genistein, which exerts anti-atherosclerotic effect. In this study, we evaluated effects of DFMG on plaque stability in ApoE-/- mice fed with high fat diet (HFD), and explored the molecular mechanism by using ApoE-/-TLR4-/- mice and RAW264.7 cells. Here, we found that DFMG significantly reduced plaque areas, macrophages infiltration and apoptosis, and TLR4 expression in HFD-fed ApoE-/- mice. Meanwhile, DFMG increased collagen fibers, smooth muscle cells and TIPE2 expression in plaques and media. Besides, TLR4 knockout promoted the protective effects of DFMG on plaques. In vitro, DFMG decreased lysophosphatidylcholine (LPC)-induced macrophages apoptosis and TLR4, while upregulated TIPE2. Moreover, TIPE2 reduced TLR4, MyD88, p-NF-κB p65Ser276, cleaved Caspase-3 overproduction, and enhanced effects of DFMG on LPC-induced macrophages. Overall, our study demonstrates that DFMG can promote plaque stability by reducing macrophage apoptosis through TIPE2/TLR4 signaling pathway, which suggests DFMG should be used to develop food additives or drugs for preventing atherosclerosis.
Collapse
Affiliation(s)
- Li Cong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Changsha 410013, China; School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xiaolin Xie
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Sujuan Liu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liping Xiang
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yong Zhang
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jianguo Cao
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xiaohua Fu
- School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
11
|
Zou Z, Li M, Zhou Y, Li J, Pan T, Lai L, Wang Q, Zhang L, Wang Q, Song Y, Zhang Y. Tumor Necrosis Factor-α-Induced Protein 8-Like 2 Negatively Regulates Innate Immunity Against RNA Virus by Targeting RIG-I in Macrophages. Front Immunol 2021; 12:642715. [PMID: 33815396 PMCID: PMC8017232 DOI: 10.3389/fimmu.2021.642715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.
Collapse
Affiliation(s)
- Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyao Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlian Zhou
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaying Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Zhang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
13
|
Shi B, Hao Y, Li W, Dong H, Xu M, Gao P. The enigmatic role of TIPE2 in asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L163-L172. [PMID: 32493031 DOI: 10.1152/ajplung.00069.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike other members of the tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8/TIPE) family that play a carcinogenic role and regulate apoptosis, TNFAIP8-like 2 (TIPE2) can not only maintain immune homeostasis but also regulate inflammation. TIPE2 mainly restrains the activation of T cell receptor (TCR) and Toll-like receptors (TLR), regulating its downstream signaling pathways, thereby regulating inflammation. Interestingly, TIPE2 is abnormally expressed in many inflammatory diseases and may promote or inhibit inflammation in different diseases. This review summarizes the molecular target and cellular function of TIPE2 in immune cells and inflammatory diseases and the underlying mechanism by which TIPE2 regulates inflammation. The function and mechanism of TIPE2 in asthma is also explained in detail. TIPE2 is abnormally expressed in asthma and participates in the pathogenesis of different phenotypes of asthma through regulating multiple inflammatory cells' activity and function. Considering the indispensable role of TIPE2 in asthma, TIPE2 may be an effective therapeutic target in asthma. However, the available data are insufficient to provide a full understanding of the complex role of TIPE2 in human asthma. Further study is still necessary to explore the possible mechanism and functions of TIPE2 in different asthma phenotypes.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mengting Xu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|