1
|
Li JF, Jin L, Ma H, Suo J, Yang R, Yang XP. 1.25(OH)2D3 decreases PCNA and mTOR expression and alleviates renal injury in Thy-1 nephritis rat model. PLoS One 2024; 19:e0311000. [PMID: 39636964 PMCID: PMC11620346 DOI: 10.1371/journal.pone.0311000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE This study investigated the role and mechanisms of 1.25(OH)2D3 in proliferative glomerulonephritis and its effect on the regulation of mesangial cells. METHODS Sixty male SD rats were randomly divided into four groups: control (CG), nephritis (NG), nephritis + 1.25(OH)2D3(NVG), and nephritis + 1.25(OH)2D3+ rapamycin (NVRG) (n = 15 per group). Three rats from each group were sacrificed on days 1, 3, 7, 14, and 21 after intervention. Urine samples were collected over 24 hours on day 0 to measure urinary protein excretion. Renal tissue samples were stained with HE and PAS to evaluate the extent of renal injury, while immunohistochemistry was employed to quantify PCNA and mTOR expression in the renal tissues. RESULTS Compared to the NG, mesangial cell proliferation in the renal tissues was significantly reduced in the NVG and NVRG at all time points (all p<0.05). PCNA expressionwas significantly higher in the NG compared to the CG (p < 0.05) and significantly lower in the NVG and NVRG (p < 0.05). mTOR expression was also significantly increased in the NG compared to the CG, with a significant reduction observed in the NVG and NVRG compared to the NG. CONCLUSION Our findings demonstrate that 1.25(OH)2D3significantly inhibits the proliferation of glomerular mesangial cells in rats. Additionally, mTOR protein is involved in the regulation of glomerular mesangial cells by 1.25(OH)2D3. These results further elucidate the molecular mechanism by which 1.25(OH)2D3alleviates renal injury in glomerulonephritis.
Collapse
Affiliation(s)
- Jian-feng Li
- Department of Nephrology, The First People’s Hospital of Nanyang City, Nanyang, Henan Province, China
| | - Lei Jin
- Department of Rheumatology, Immunology & Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Ma
- Department of Gastrointestinal Surgery, The First People’s Hospital of Nanyang City, Nanyang, Henan Province, China
| | - Jie Suo
- Department of Nephrology, The First People’s Hospital of Aksu City, Aksu, Xin jiang Province, China
| | - Rui Yang
- Department of Nephrology, The First Affiliated Hospital of Shi he zi University, Shihezi City, Xin jiang Province, China
| | - Xiao-ping Yang
- Department of Nephrology, The First Affiliated Hospital of Shi he zi University, Shihezi City, Xin jiang Province, China
| |
Collapse
|
2
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhang H, Lu H, Zhan B, Shi H, Shui B. Comprehensive Analysis of ceRNA Network and Immune Cell Infiltration Pattern of Autophagy-Related Genes in IgA Nephropathy. Kidney Blood Press Res 2024; 49:528-547. [PMID: 38824914 DOI: 10.1159/000539571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION IgA nephropathy (IgAN) is a prevalent worldwide glomerular disease with a complex pathophysiology that has significant economic implications. Despite the lack of successful research, this study aims to discover the potential competing endogenous RNA (ceRNA) network of autophagy-associated genes in IgAN and examine their correlation with immune cell infiltration. METHODS Autophagy-related hub genes were discovered by assessing the GSE116626 dataset and constructing a protein-protein interaction network. Nephroseq v5 analysis engine was used to analyze correlations between hub genes and proteinuria, glomerular filtration rate (GFR), and serum creatinine levels. Then, a ceRNA network construction and the CIBERSORT tool for immune cell infiltration analysis were also performed. Additionally, the differentially expressed autophagy-related genes were used to predict potential targeted medications for IgAN. RESULTS Overall, 1,396 differentially expressed genes were identified in IgAN along with 25 autophagy-related differentially expressed messenger RNAs. Enrichment analysis revealed significant involvement of autophagy and apoptosis in biological processes. Next, we evaluated the top hub nodes based on their highest degrees. The ability of IgAN discrimination was confirmed in the GSE35487 and GSE37460 datasets by validating the five hub genes: SIRT1, FOS, CCL2, CDKN1A, and MYC. In the Nephroseq v5 analysis engine, the clinical correlation of the five hub genes was confirmed. Furthermore, the ceRNA network identified 18 circular RNAs and 2 microRNAs associated with hub autophagy-related genes in IgAN. Our investigation identified hsa-miR-32-3p and hsa-let-7i-5p as having elevated expression levels and substantial diagnostic value. Finally, four distinctively infiltrated immune cells were found to be associated with the hub autophagy-related genes, and 67 drugs were identified as potential therapeutic options for IgAN. CONCLUSION This study sheds light on a novel ceRNA regulatory network mechanism associated with autophagy in IgAN development.
Collapse
Affiliation(s)
- Huaying Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiai Lu
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bicui Zhan
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - He Shi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingjie Shui
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Xie K, Li Z, Zhang Y, Wu H, Zhang T, Wang W. Artemisinin and its derivatives as promising therapies for autoimmune diseases. Heliyon 2024; 10:e27972. [PMID: 38596057 PMCID: PMC11001780 DOI: 10.1016/j.heliyon.2024.e27972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Artemisinin, a traditional Chinese medicine with remarkable antimalarial activity. In recent years, studies demonstrated that artemisinin and its derivatives (ARTs) showed anti-inflammatory and immunoregulatory effects. ARTs have been developed and gradually applied to treat autoimmune and inflammatory diseases. However, their role in the treament of patients with autoimmune and inflammatory diseases in particular is less well recognized. This review will briefly describe the history of ARTs use in patients with autoimmune and inflammatory diseases, the theorized mechanisms of action of the agents ARTs, their efficacy in patients with autoinmmune and inflammatory diseases. Overall, ARTs have numerous beneficial effects in patients with autoimmune and inflammatory diseases, and have a good safety profile.
Collapse
Affiliation(s)
- Kaidi Xie
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| |
Collapse
|
5
|
Gao X, Lin X, Wang Q, Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med Res Rev 2024; 44:867-891. [PMID: 38054758 DOI: 10.1002/med.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.
Collapse
Affiliation(s)
- Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| |
Collapse
|
6
|
Jiang P, Yao C, Guo DA. Traditional Chinese medicine for the treatment of immune-related nephropathy: A review. Acta Pharm Sin B 2024; 14:38-66. [PMID: 38239236 PMCID: PMC10793104 DOI: 10.1016/j.apsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
Immune-related nephropathy (IRN) refers to immune-response-mediated glomerulonephritis and is the main cause of end-stage renal failure. The pathogenesis of IRN is not fully understood; therefore, treatment is challenging. Traditional Chinese medicines (TCMs) have potent clinical effects in the treatment of the IRN conditions immunoglobulin A nephropathy, lupus nephropathy, and diabetic nephropathy. The underlying mechanisms mainly include its inhibition of inflammation; improvements to renal interstitial fibrosis, oxidative stress, autophagy, apoptosis; and regulation of immunity. In this review, we summarize the clinical symptoms of the three IRN subtypes and the use of TCM prescriptions, herbs, and bioactive compounds in treating IRN, as well as the potential mechanisms, intending to provide a reference for the future study of TCM as IRN treatments.
Collapse
Affiliation(s)
- Pu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
7
|
Lan Z, Zhao L, Peng L, Wan L, Liu D, Tang C, Chen G, Liu Y, Liu H. EIF2α/ATF4 pathway enhances proliferation of mesangial cell via cyclin D1 during endoplasmic reticulum stress in IgA nephropathy. Clin Immunol 2023; 257:109840. [PMID: 37939913 DOI: 10.1016/j.clim.2023.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
IgA nephropathy (IgAN) is an essential cause of kidney failure and end-stage kidney disease worldwide. Mesangial hypercellularity is an important characteristic of IgAN, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress is a series of stress responses to restore the function of endoplasmic reticulum. We aimed to explore how ER stress functioned in kidneys of IgAN. We first examined ER stress in IgAN kidneys in vivo and in vitro, by testing the levels of ER stress associated proteins (BIP, p-eIF2α and ATF4). Our results showed that ER stress was activated in IgAN patients, mice and cell model. ER stress activation was related to the distribution of IgA deposition and the degree of mesangial proliferation. To determine the role of ER stress in mesangial cell (MC) proliferation of IgAN, we then tested the levels of ER stress and MC proliferation (cyclin D1, cell viability and cell cycle) through inhibiting ER stress associated proteins. After inhibiting ER stress associated proteins, ER stress was inactivated and cell proliferation was inhibited in MCs. We also explored the correlation between ER stress in the glomerulus and the clinical outcomes of IgAN patients in a prospective study. Patients with lower expression of p-eIF2α or ATF4 had higher rates of hematuria remission, proteinuria remission and clinical remission. In summary, our work outlines that in IgAN, ER stress mediated by eIF2α/ATF4 pathway promotes MC proliferation via up-regulating the expression of cyclin D1. Furthermore, p-eIF2α and ATF4 in the glomerulus negatively correlate with the clinical remission of IgAN patients.
Collapse
Affiliation(s)
- Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
8
|
Ma S, Zhao M, Chang M, Shi X, Shi Y, Zhang Y. Effects and mechanisms of Chinese herbal medicine on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154913. [PMID: 37307737 DOI: 10.1016/j.phymed.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), is the main cause of end-stage renal disease, that causes serious physical and psychological burden to patients worldwide. Some traditional treatment measures, such as blocking the renin-angiotensin-aldosterone system, controlling blood pressure, and following a low-protein diet, may not achieve satisfactory results. Therefore, more effective and safe therapies for IgAN are urgently needed. PURPOSE The aim of this review is to summarize the clinical efficacy of Chinese herbal medicines (CHMs) and their active ingredients in the treatment and management of IgAN based on the results of clinical trials, systematic reviews, and meta-analyses, to fully understand the advantages and perspectives of CHMs in the treatment of IgAN. STUDY DESIGN AND METHODS For this review, the following electronic databases were consulted: PubMed, ResearchGate, Science Direct, Web of Science, Chinese National Knowledge Infrastructure and Wanfang Data, "IgA nephropathy," "traditional Chinese medicine," "Chinese herbal medicine," "herb," "mechanism," "Meta-analysis," "systematic review," "RCT" and their combinations were the keywords to search the relevant literature. Data were collected from 1990 to 2022. RESULTS This review found that the active ingredients of CHMs commonly act on multiple signaling pathways in the clinical treatment of IgAN, mainly with antioxidant, anti-inflammatory and anti-fibrosis effects, and regulation of autophagy. CONCLUSION Compared with the single-target therapy of modern medicine, CHMs can regulate the corresponding pathways from the aspects of anti-inflammation, anti-oxidation, anti-fibrosis and autophagy to play a multi-target treatment of IgAN through syndrome differentiation and treatment, which has good clinical efficacy and can be used as the first choice or alternative therapy for IgAN treatment. This review provides evidence and research direction for a comprehensive clinical understanding of the protective effect of Chinese herbal medicine on IgAN.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
9
|
Li X, Zeng M, Liu J, Zhang S, Liu Y, Zhao Y, Wei C, Yang K, Huang Y, Zhang L, Xiao L. Identifying potential biomarkers for the diagnosis and treatment of IgA nephropathy based on bioinformatics analysis. BMC Med Genomics 2023; 16:63. [PMID: 36978098 PMCID: PMC10044383 DOI: 10.1186/s12920-023-01494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the leading cause of end-stage renal disease in young adults. Nevertheless, the current diagnosis exclusively relies on invasive renal biopsy, and specific treatment is deficient. Thus, our study aims to identify potential crucial genes, thereby providing novel biomarkers for the diagnosis and therapy of IgAN. METHODS Three microarray datasets were downloaded from GEO official website. Differentially expressed genes (DEGs) were identified by limma package. GO and KEGG analysis were conducted. Tissue/organ-specific DEGs were distinguished via BioGPS. GSEA was utilized to elucidate the predominant enrichment pathways. The PPI network of DEGs was established, and hub genes were mined through Cytoscape. The CTD database was employed to determine the association between hub genes and IgAN. Infiltrating immune cells and their relationship to hub genes were evaluated based on CIBERSORT. Furthermore, the diagnostic effectiveness of hub markers was subsequently predicted using the ROC curves. The CMap database was applied to investigate potential therapeutic drugs. The expression level and diagnostic accuracy of TYROBP was validated in the cell model of IgAN and different renal pathologies. RESULTS A total of 113 DEGs were screened, which were mostly enriched in peptidase regulator activity, regulation of cytokine production, and collagen-containing extracellular matrix. Among these DEGs, 67 genes manifested pronounced tissue and organ specificity. GSEA analysis revealed that the most significant enriched gene sets were involved in proteasome pathway. Ten hub genes (KNG1, FN1, ALB, PLG, IGF1, EGF, HRG, TYROBP, CSF1R, and ITGB2) were recognized. CTD showed a close connection between ALB, IGF, FN1 and IgAN. Immune infiltration analysis elucidated that IGF1, EGF, HRG, FN1, ITGB2, and TYROBP were closely associated with infiltrating immune cells. ROC curves reflected that all hub genes, especially TYROBP, exhibited a good diagnostic value for IgAN. Verteporfin, moxonidine, and procaine were the most significant three therapeutic drugs. Further exploration proved that TYROBP was not only highly expressed in IgAN, but exhibited high specificity for the diagnosis of IgAN. CONCLUSIONS This study may offer novel insights into the mechanisms involved in IgAN occurrence and progression and the selection of diagnostic markers and therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Mengru Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shumin Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yifei Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuee Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cong Wei
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kexin Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Huang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
10
|
Zhao J, Liu H, Xia M, Chen Q, Wan L, Leng B, Tang C, Chen G, Liu Y, Zhang L, Liu H. Network Pharmacology and Experimental Validation to Explore That Celastrol Targeting PTEN is the Potential Mechanism of Tripterygium wilfordii (Lév.) Hutch Against IgA Nephropathy. Drug Des Devel Ther 2023; 17:887-900. [PMID: 36992900 PMCID: PMC10042171 DOI: 10.2147/dddt.s402503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Accumulating clinical evidence showed that Tripterygium hypoglaucum (Lév.) Hutch (THH) is effective against IgA nephropathy (IgAN), but the mechanism is still unclear. This study is to evaluate the renal protective effect and molecular mechanism of THH against IgAN via network pharmacology, molecular docking strategy and experimental validation. Methods Several databases were used for obtaining the active ingredients of THH, the corresponding targets, as well as the IgAN-related genes. The critical active ingredients, functional pathways, and potential for the combination of the hub genes and their corresponding active components were determined through bioinformatics analysis and molecular docking. The IgAN mouse model was treated with celastrol (1 mg/kg/d) for 21 days, and the aggregated IgA1-induced human mesangial cell (HMC) was treated with various concentrations of celastrol (25, 50 or 75 nM) for 48 h. The immunohistochemistry and Western blot techniques were applied to evaluate the protein expression of the predicted target. The cell counting kit 8 (CCK8) was used to detect HMC proliferation. Results A total of 17 active ingredients from THH were screened, covering 165 IgAN-related targets. The PPI network identified ten hub targets, including PTEN. The binding affinity between the celastrol and PTEN was the highest (-8.69 kJ/mol). The immunohistochemistry showed that celastrol promoted the expression of PTEN in the glomerulus of IgAN mice. Furthermore, the Western blot techniques showed that celastrol significantly elevated the expression of PTEN and inhibited PCNA and Cyclin D1 in vitro and in vivo. The CCK8 assay determined that celastrol decreased HMC proliferation in a concentration-dependent manner. Conclusion This study suggests that activating PTEN by celastrol may play a pivotal role in THH alleviating IgAN renal injury.
Collapse
Affiliation(s)
- Juanyong Zhao
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haiyang Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ming Xia
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qian Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Lili Wan
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bin Leng
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Guochun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yu Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Lei Zhang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Hong Liu; Lei Zhang, Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China, Tel +86-13973116951; +86-18673174522, Email ;
| |
Collapse
|
11
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
12
|
Efficacy of Prednisolone/Zn Metal Complex and Artemisinin Either Alone or in Combination on Lung Functions after Excessive Exposure to Electronic Cigarettes Aerosol with Assessment of Antibacterial Activity. CRYSTALS 2022. [DOI: 10.3390/cryst12070972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of transition metal complexes as therapeutic compounds has become more and more pronounced. These complexes offer a great diversity of uses in their medicinal applications. Electronic cigarettes (ECs) are an electronic nicotine delivery system that contain aerosol (ECR). The ligation behavior of prednisolone, which is a synthetic steroid that is used to treat allergic diseases and asthma arthritis, and its Zn (II) metal complex were studied and characterized based on elemental analysis, molar conductance, Fourier-transform infrared (FT-IR) spectra, electronic spectra, XRD, scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM). The FT-IR spectral data revealed that PRD acts as a mono-dentate ligand via oxygen atoms of the carbonyl group. Electronic and FT-IR data revealed that the PRD/Zn (II) metal complexes have square planner geometry. Artemisinin (ART) is the active main constituent of Artemisia annua extract, and it has been demonstrated to exert an excellent antimalarial effect. The experiment was performed on 40 male mice that were divided into the following 7 groups: Control, EC group, PRD/Zn, ART, EC plus PRD/Zn, EC plus ART, and PRD plus combination of PRD/Zn and ART. Serum CRP, IL-6, and antioxidants biomarkers were determined. Pulmonary tissue histology was evaluated. When in combination with Zn administration, PRD showed potent protective effects against pulmonary biochemical alterations induced by ECR and suppressed severe oxidative stress and pulmonary structure alterations. Additionally, PRD/Zn combined with ART prevented any stress on the pulmonary tissues via antioxidant regulation, reducing inflammatory markers CRP and Il-6 and improving antioxidant enzymatic levels more than either PRD or ART alone. Therefore, PRD/Zn combined with ART produced a synergistic effect against any sort of oxidative stress and also improved the histological structure of the lung tissues. These findings are of great importance for saving pulmonary function, especially during pandemic diseases, such as during the COVID-19 pandemic.
Collapse
|
13
|
Zhu X, Shen X, Lin B, Fang J, Jin J, He Q. Liuwei Dihuang Pills Inhibit Podocyte Injury and Alleviate IgA Nephropathy by Directly Altering Mesangial Cell-Derived Exosome Function and Secretion. Front Pharmacol 2022; 13:889008. [PMID: 35899112 PMCID: PMC9309816 DOI: 10.3389/fphar.2022.889008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is the most common glomerular disease worldwide. Its pathological features include IgA immune complex deposition, accompanied by mesangial cell proliferation and mesangial matrix expansion. This study was conducted to investigate the effects of Liuwei Dihuang pills (LWDHW) on IgAN in mice and human podocytes, as well as to determine their underlying mechanisms of action. Methods: For in vitro experiments, podocytes were exposed to the human mesangial cell culture medium supernatant of glomerular cells treated with aggregated IgA1 (aIgA1) and LWDHW-containing serum. Cell viability and the proportion of positive cells were evaluated using CCK-8 and flow apoptosis kits, respectively. The cells were collected for western blot analysis. Twenty-four mice with IgAN induced by oral bovine serum albumin administration combined with tail vein injection of staphylococcal enterotoxin B were randomly divided into four groups of six mice each: untreated model group, model + LWDHW group, model + rapamycin group, and model + LWDHW + rapamycin group. The normal control group contained six mice. The red blood cell count in the urine, urine protein, blood urea nitrogen, serum creatinine, and IgA deposition were determined, and TUNEL and western blotting were performed in the mouse kidney tissues. Results:In vitro experiments showed that LWDHW promoted autophagy by regulating the PI3K/Akt/mTOR signalling pathway and improved the damage to podocytes caused by the aIgA1-treated mesangial cell supernatant. This study demonstrates the effectiveness of LWDHW for treating IgAN. In the animal experiments, LWDHW significantly reduced the urine red blood cell count, serum creatinine and urea nitrogen contents, and 24 h urinary protein function and improved IgA deposition in the kidney tissues, glomerular volume, glomerular cell proliferation and polysaccharide deposition, and glomerular cell apoptosis. The pills also reversed the changes in the LC3II/I ratio and p62 content in the kidney tissues. The combination of LWDHW and rapamycin showed stronger inhibitory effects compared to those of LWDHW or rapamycin alone. Conclusion: LWDHW may improve regulation of the PI3K-Akt-mTOR pathway and inhibit autophagy in podocytes, as well as alleviate IgA nephropathy by directly altering mesangial cell exosomes.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Bengbu Medical College, Bengbu, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaogang Shen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Lin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiaxi Fang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| | - Qiang He
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| |
Collapse
|
14
|
Xia M, Liu D, Liu H, Peng L, Yang D, Tang C, Chen G, Liu Y, Liu H. Identification of Hub Genes and Therapeutic Agents for IgA Nephropathy Through Bioinformatics Analysis and Experimental Validation. Front Med (Lausanne) 2022; 9:881322. [PMID: 35836957 PMCID: PMC9273898 DOI: 10.3389/fmed.2022.881322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerular disease and the leading cause of the end-stage renal disease in the world. The pathogenesis of IgAN has not been well elucidated, and yet treatment is limited. High-throughput microarray has been applied for elucidating molecular biomarkers and potential mechanisms involved in IgAN. This study aimed to identify the potential key genes and therapeutics associated with IgAN using integrative bioinformatics and transcriptome-based computational drug repurposing approach. Methods Three datasets of mRNA expression profile were obtained from the gene expression omnibus database and differentially expressed genes (DEGs) between IgAN glomeruli and normal tissue were identified by integrated analysis. Gene ontology and pathway enrichment analyses of the DEGs were performed by R software, and protein-protein interaction networks were constructed using the STRING online search tool. External dataset and immunohistochemical assessment of kidney biopsy specimens were used for hub gene validation. Potential compounds for IgAN therapy were obtained by Connectivity Map (CMap) analysis and preliminarily verified in vitro. Stimulated human mesangial cells were collected for cell proliferation and cell cycle analysis using cell counting kit 8 and flow cytometry, respectively. Results 134 DEGs genes were differentially expressed across kidney transcriptomic data from IgAN patients and healthy living donors. Enrichment analysis showed that the glomerular compartments underwent a wide range of interesting pathological changes during kidney injury, focused on anion transmembrane transporter activity and protein digestion and absorption mostly. Hub genes (ITGB2, FCER1G, CSF1R) were identified and verified to be significantly upregulated in IgAN patients, and associated with severity of renal lesions. Computational drug repurposing with the CMap identified tetrandrine as a candidate treatment to reverse IgAN hub gene expression. Tetrandrine administration significantly reversed mesangial cell proliferation and cell cycle transition. Conclusion The identification of DEGs and related therapeutic strategies of IgAN through this integrated bioinformatics analysis provides a valuable resource of therapeutic targets and agents of IgAN. Especially, our findings suggest that tetrandrine might be beneficial for IgAN, which deserves future research.
Collapse
|
15
|
Zhao L, Lan Z, Peng L, Wan L, Liu D, Tan X, Tang C, Chen G, Liu H. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif 2022; 55:e13278. [PMID: 35733381 PMCID: PMC9436901 DOI: 10.1111/cpr.13278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mesangial cell proliferation is the most basic pathological feature of immunoglobulin A nephropathy (IgAN); however, the specific underlying mechanism and an appropriate therapeutic strategy are yet to be unearthed. This study aimed to investigate the therapeutic effect of triptolide (TP) on IgAN and the mechanism by which TP regulates autophagy and proliferation of mesangial cells through the CARD9/p38 MAPK pathway. Methods We established a TP‐treated IgAN mouse model and produced IgA1‐induced human mesangial cells (HMC) and divided them into control, TP, IgAN, and IgAN+TP groups. The levels of mesangial cell proliferation (PCNA, cyclin D1, cell viability, and cell cycle) and autophagy (P62, LC3 II, and autophagy flux rate) were measured, with the autophagy inhibitor 3‐Methyladenine used to explore the relationship between autophagy and proliferation. We observed CARD9 expression in renal biopsies from patients and analyzed its clinical significance. CARD9 siRNA and overexpression plasmids were constructed to investigate the changes in mesangial cell proliferation and autophagy as well as the expression of CARD9 and p‐p38 MAPK/p38 MAPK following TP treatment. Results Administering TP was safe and effectively alleviated mesangial cell proliferation in IgAN mice. Moreover, TP inhibited IgA1‐induced HMC proliferation by promoting autophagy. The high expression of CARD9 in IgAN patients was positively correlated with the severity of HMC proliferation. CARD9/p38 MAPK was involved in the regulation of HMC autophagy and proliferation, and TP promoted autophagy to inhibit HMC proliferation by downregulating the CARD9/p38 MAPK pathway in IgAN. Conclusion TP promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xia Tan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
16
|
Efficacy and safety of artesunate for patients with IgA nephropathy: a study protocol for a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2022; 23:444. [PMID: 35614482 PMCID: PMC9134594 DOI: 10.1186/s13063-022-06336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND IgA nephropathy is the most common glomerular disease and is a common cause of progression to end-stage renal disease in patients with kidney diseases. Proteinuria levels are critical for the prognosis of patients with IgA nephropathy, but many patients are still unable to effectively control their proteinuria levels after receiving RAAS blockers. Antimalarial drugs have shown good efficacy in the treatment of kidney disease in previous studies; however, there have been no strictly designed randomized controlled trials to confirm the clinical efficacy of artesunate for treating IgA nephropathy patients. Therefore, we designed this clinical trial to compare the effect of artesunate versus placebo in patients with IgA nephropathy. METHODS This study is a randomized, double-blind, three-group-parallel, placebo-controlled clinical trial. One hundred and twenty eligible IgA nephropathy patients at risk of progression will be randomly divided into the artesunate 100-mg group, artesunate 50-mg group, and placebo group. Changes in proteinuria and renal function will be measured 6 months after the intervention. The levels of Gd-IgA1 and anti-Gd-IgA1 in the patient's blood will also be tested to explore the possible immune mechanisms. DISCUSSION Clinical evidence supporting artesunate treatment of IgA nephropathy is currently lacking, and we expect that the results of this trial will provide high-quality clinical evidence for artesunate as a treatment option for IgA nephropathy in the future. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2000038104 . Registered on 10 September 2020.
Collapse
|
17
|
Yuan Z, Wang S, Tan X, Wang D. New Insights into the Mechanisms of Chaperon-Mediated Autophagy and Implications for Kidney Diseases. Cells 2022; 11:cells11030406. [PMID: 35159216 PMCID: PMC8834181 DOI: 10.3390/cells11030406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a separate type of lysosomal proteolysis, characterized by its selectivity of substrate proteins and direct translocation into lysosomes. Recent studies have declared the involvement of CMA in a variety of physiologic and pathologic situations involving the kidney, and it has emerged as a potential target for the treatment of kidney diseases. The role of CMA in kidney diseases is context-dependent and appears reciprocally with macroautophagy. Among the renal resident cells, the proximal tubule exhibits a high basal level of CMA activity, and restoration of CMA alleviates the aging-related tubular alternations. The level of CMA is up-regulated under conditions of oxidative stress, such as in acute kidney injury, while it is declined in chronic kidney disease and aging-related kidney diseases, leading to the accumulation of oxidized substrates. Suppressed CMA leads to the kidney hypertrophy in diabetes mellitus, and the increase of CMA contributes to the progress and chemoresistance in renal cell carcinoma. With the progress on the understanding of the cellular functions and uncovering the clinical scenario, the application of targeting CMA in the treatment of kidney diseases is expected.
Collapse
|
18
|
Xia M, Liu D, Liu H, Zhao J, Tang C, Chen G, Liu Y, Liu H. Based on Network Pharmacology Tools to Investigate the Mechanism of Tripterygium wilfordii Against IgA Nephropathy. Front Med (Lausanne) 2022; 8:794962. [PMID: 34977095 PMCID: PMC8715946 DOI: 10.3389/fmed.2021.794962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease and poses a global major public health burden. The preparation of Tripterygium wilfordii Hook F (TwHF) is widely applied for treating patients with Immunoglobulin A nephropathy in China, while the molecular mechanisms remain unclear. This study aimed to verify the therapeutic mechanism of TwHF on IgAN by undertaking a holistic network pharmacology strategy in combination with in vitro and in vivo experiments. Methods: TwHF active ingredients and their targets were obtained via the Traditional Chinese Medicine Systems Pharmacology Database. The collection of IgAN-related target genes was collected from GeneCards and OMIM. TwHF-IgAN common targets were integrated and visualized by Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the predominant molecular mechanisms and pathways of TwHF on the treatment of IgAN. The protein-protein interaction network was constructed by the STRING online search tool, and hub genes were identified using R software. The expression of hub gene and related signaling were evaluated in TwHF-treated mice through immunohistochemistry and western blot and further validated in human mesangial cells (HMCs). In addition, Cell counting kit 8 (CCK8) and flow cytometry were used to detect the effects of TwHF on cell proliferation and cell cycle of mesangial cells. Results: A total of 51 active ingredients were screened from TwHF and 61 overlapping targets related to IgAN were considered potential therapeutic targets, GO functions and KEGG analyses demonstrated that these genes were primarily associated with DNA-binding transcription factor binding, lipid and atherosclerosis pathway. Genes with higher degrees including AKT1, CXCL8, MMP9, PTGS2, CASP3, JUN are hub genes of TwHF against IgAN. Verification of hub gene JUN both in vitro and in vivo showed that TwHF significantly attenuated JUN phosphorylation in the kidneys of IgAN mice and aIgA1-activated HMCs, meanwhile suppressing HMCs proliferation and arresting G1-S cell cycle progression. Conclusion: Our research strengthened the mechanisms of TwHF in treating IgAN, inhibition of JUN activation may play a pivotal role in TwHF in alleviating IgAN renal injury.
Collapse
Affiliation(s)
- Ming Xia
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyang Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juanyong Zhao
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guochun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
20
|
Qiu F, Liu J, Mo X, Liu H, Chen Y, Dai Z. Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs. Front Immunol 2021; 12:751772. [PMID: 34567013 PMCID: PMC8458561 DOI: 10.3389/fimmu.2021.751772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Artemisinin and its derivatives (ARTs) are known as conventional antimalarial drugs with clinical safety and efficacy. Youyou Tu was awarded a Nobel Prize in Physiology and Medicine due to her discovery of artemisinin and its therapeutic effects on malaria. Apart from antimalarial effects, mounting evidence has demonstrated that ARTs exert therapeutic effects on inflammation and autoimmune disorders because of their anti-inflammatory and immunoregulatory properties. In this aspect, tremendous progress has been made during the past five to seven years. Therefore, the present review summarizes recent studies that have explored the anti-inflammatory and immunomodulatory effects of ARTs on autoimmune diseases and transplant rejection. In this review, we also discuss the cellular and molecular mechanisms underlying the immunomodulatory effects of ARTs. Recent preclinical studies will help lay the groundwork for clinical trials using ARTs to treat various immune-based disorders, especially autoimmune diseases.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfeng Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumei Mo
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Huang X, Xu G. An Update on Targeted Treatment of IgA Nephropathy: An Autoimmune Perspective. Front Pharmacol 2021; 12:715253. [PMID: 34497518 PMCID: PMC8419281 DOI: 10.3389/fphar.2021.715253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin (Ig) A nephropathy (IgAN) is the commonest form of primary glomerulonephritis worldwide and is, considered a significant cause of end-stage renal disease in young adults. The precise pathogenesis of IgAN is unclear. The clinical and pathological features vary significantly between individuals and races, which makes treating IgAN difficult. Currently, the therapeutic strategies in IgAN are still optimal blood pressure control and proteinuria remission to improve the renal function in most cases. Immunosuppressive drugs such as corticosteroids can be considered in patients with persistent proteinuria and a high risk of renal function decline; however, they include a high toxicity profile. Therefore, the safety and selectivity of medications are critical concerns in the treatment of IgAN. Various pharmacological therapeutic targets have emerged based on the evolving understanding of the autoimmune pathogenesis of IgAN, which involves the immune response, mucosal immunity, renal inflammation, complement activation, and autophagy; treatments based on these mechanisms have been explored in preclinical and clinical studies. This review summarizes the progress concerning targeted therapeutic strategies and the relevant autoimmune pathogenesis in IgAN.
Collapse
Affiliation(s)
- Xin Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Li Y, Xia M, Peng L, Liu H, Chen G, Wang C, Yuan D, Liu Y, Liu H. Downregulation of miR‑214-3p attenuates mesangial hypercellularity by targeting PTEN‑mediated JNK/c-Jun signaling in IgA nephropathy. Int J Biol Sci 2021; 17:3343-3355. [PMID: 34512151 PMCID: PMC8416718 DOI: 10.7150/ijbs.61274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Mesangial cell (MC) proliferation and matrix expansion are basic pathological characteristics of IgA nephropathy (IgAN). However, the stepwise mechanism of MC proliferation and the exact set of related signaling molecules remain largely unclear. In this study, we found a significant upregulation of miR-214-3p in the renal cortex of IgAN mice by miRNA sequencing. In situ hybridization analysis showed that miR-214-3p expression was obviously elevated in MCs in the renal cortex in IgAN. Functionally, knockdown of miR-214-3p alleviated mesangial hypercellularity and renal lesions in IgAN mice. In vitro, the inhibition of miR-214-3p suppressed MC proliferation and arrested G1-S cell cycle pSrogression in IgAN. Mechanistically, a luciferase reporter assay verified PTEN as a direct target of miR-214-3p. Downregulation of miR-214-3p increased PTEN expression and reduced p-JNK and p-c-Jun levels, thereby inhibiting MC proliferation and ameliorating renal lesions in IgAN. Moreover, these changes could be attenuated by co-transfection with PTEN siRNA. Collectively, these results illustrated that miR-214-3p accelerated MC proliferation in IgAN by directly targeting PTEN to modulate JNK/c-Jun signaling. Therefore, miR-214-3p may represent a novel therapeutic target for IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
23
|
Luo J, Odaka Y, Huang Z, Cheng B, Liu W, Li L, Shang C, Zhang C, Wu Y, Luo Y, Yang S, Houghton PJ, Guo X, Huang S. Dihydroartemisinin Inhibits mTORC1 Signaling by Activating the AMPK Pathway in Rhabdomyosarcoma Tumor Cells. Cells 2021; 10:cells10061363. [PMID: 34205996 PMCID: PMC8226784 DOI: 10.3390/cells10061363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dihydroartemisinin (DHA), an anti-malarial drug, has been shown to possess potent anticancer activity, partly by inhibiting the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling. However, how DHA inhibits mTORC1 is still unknown. Here, using rhabdomyosarcoma (RMS) as a model, we found that DHA reduced cell proliferation and viability in RMS cells, but not those in normal cells, which was associated with inhibition of mTORC1. Mechanistically, DHA did not bind to mTOR or FK506 binding protein 12 (FKBP12). In addition, DHA neither inhibited insulin-like growth factor-1 receptor (IGF-1R), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinase ½ (Erk1/2), nor activated phosphatase and tensin homolog (PTEN) in the cells. Rather, DHA activated AMP-activated protein kinase (AMPK). Pharmacological inhibition of AMPK, ectopic expression dominant negative or kinase-dead AMPK, or knockdown of AMPKα attenuated the inhibitory effect of DHA on mTORC1 in the cells. Additionally, DHA was able to induce dissociation of regulatory-associated protein of mTOR (raptor) from mTOR and inhibit mTORC1 activity. Moreover, treatment with artesunate, a prodrug of DHA, dose-dependently inhibited tumor growth and concurrently activated AMPK and suppressed mTORC1 in RMS xenografts. The results indicated that DHA inhibits mTORC1 by activating AMPK in tumor cells. Our finding supports that DHA or artesunate has a great potential to be repositioned for treatment of RMS.
Collapse
Affiliation(s)
- Jun Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yoshinobu Odaka
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Zhu Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing 246011, China
| | - Bing Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Lin Li
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3000, USA;
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| |
Collapse
|
24
|
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 2021; 11:322-339. [PMID: 33643815 PMCID: PMC7893118 DOI: 10.1016/j.apsb.2020.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- ASP, aspartate aminotransferase
- Artemisia
- Artemisinin
- Artesunate
- BAD, BCL-2-associated agonist of cell death
- BDL, bile duct ligation
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- CCl4, carbon tetrachloride
- CTGF, connective tissue growth factor
- Col I, type I collagen
- DHA, dihydroartemisinin
- DLA, dried leaf Artemisia
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- FLS, fibroblast-like synoviocyte
- Fibroblast
- Fibrosis
- HA, hyaluronic acid
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- LAP, latency-associated peptide
- LDH, lactate dehydrogenase
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- Myofibroblast
- NAG, N-acetyl-β-d-glucosaminidase
- NICD, Notch intracellular domain
- PCNA, proliferating cell nuclear antigen
- PHN, passive heymann nephritis
- ROS, reactive oxygen species
- STZ, streptozotocin
- Scar
- TGF, β-transforming growth factor-β
- TGF-β
- TIMP, tissue inhibitor of metalloproteinase
- UUO, unilateral ureteral obstruction
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- sCr, serum creatinine
- α-SMA, smooth muscle α-actin
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
25
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Xia M, Liu D, Liu Y, Liu H. The Therapeutic Effect of Artemisinin and Its Derivatives in Kidney Disease. Front Pharmacol 2020; 11:380. [PMID: 32296335 PMCID: PMC7136752 DOI: 10.3389/fphar.2020.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisinin (ARS) and its derivatives (ARSs) are recommended as the first-line antimalarial drugs for the treatment of malaria. Besides antimalarial function, its potent anti-inflammatory and immunoregulatory properties, as well as the ability to regulate oxidative stress have brought them to a prominent position. As researchers around the world are continually exploring the unknown biological activities of ARS derivatives, experimental studies have shown much progress in renal therapy. This review aims to give a brief overview of the current research on ARSs applications for kidney treatment with the evaluation of therapeutic properties and potential molecular mechanisms.
Collapse
Affiliation(s)
- Ming Xia
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|