1
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2024:S1465-3249(24)00934-4. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Jiang W, Li X, Zhang Y, Zhou W. Natural Compounds for the Treatment of Acute Pancreatitis: Novel Anti-Inflammatory Therapies. Biomolecules 2024; 14:1101. [PMID: 39334867 PMCID: PMC11430608 DOI: 10.3390/biom14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Acute pancreatitis remains a serious public health problem, and the burden of acute pancreatitis is increasing. With significant morbidity and serious complications, appropriate and effective therapies are critical. Great progress has been made in understanding the pathophysiology of acute pancreatitis over the past two decades. However, specific drugs targeting key molecules and pathways involved in acute pancreatitis still require further study. Natural compounds extracted from plants have a variety of biological activities and can inhibit inflammation and oxidative stress in acute pancreatitis by blocking several signaling pathways, such as the nuclear factor kappa-B and mitogen-activated protein kinase pathways. In this article, we review the therapeutic effects of various types of phytochemicals on acute pancreatitis and discuss the mechanism of action of these natural compounds in acute pancreatitis, aiming to provide clearer insights into the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Yi Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China;
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| |
Collapse
|
3
|
Qu Y, Wang Z, Dong L, Zhang D, Shang F, Li A, Gao Y, Bai Q, Liu D, Xie X, Ming L. Natural small molecules synergize mesenchymal stem cells for injury repair in vital organs: a comprehensive review. Stem Cell Res Ther 2024; 15:243. [PMID: 39113141 PMCID: PMC11304890 DOI: 10.1186/s13287-024-03856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.
Collapse
Affiliation(s)
- Yanling Qu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Fengqing Shang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Afeng Li
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Yanni Gao
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Qinhua Bai
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Liu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Leiguo Ming
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China.
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
4
|
Zhang K, Du X, Gao Y, Liu S, Xu Y. Mesenchymal Stem Cells for Treating Alzheimer's Disease: Cell Therapy and Chemical Reagent Pretreatment. J Alzheimers Dis 2023:JAD221253. [PMID: 37125553 DOI: 10.3233/jad-221253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
As the size of the population aged 65 and older continues to grow, the incidence and mortality rates of Alzheimer's disease (AD) are increasing annually. Unfortunately, current treatments only treat symptoms temporarily and do not alter the patients' life expectancy or course of AD. Mesenchymal stem cells (MSCs) have shown a certain therapeutic potential in neurodegenerative diseases including AD due to their neuroinflammatory regulation and neuroprotective effects. However, the low survival and homing rates of MSCs after transplantation seriously affect their therapeutic effectiveness. Therefore, appropriate in vitro preconditioning is necessary to increase the survival and homing rates of MSCs to improve their effectiveness in treating AD. Here we summarize the therapeutic mechanisms of MSCs in AD and the chemical reagents used for the pretreatment of MSCs.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhang Z, Zhang M, Sun Y, Li M, Chang C, Liu W, Zhu X, Wei L, Wen F, Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci Rep 2023; 13:5812. [PMID: 37037844 PMCID: PMC10085980 DOI: 10.1038/s41598-023-32906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Adipose derived stem cells (ADSCs) are popular in regenerative medicine due to their easy availability, low immunogenicity and lack of controversy regarding their ethical debate use. Although ADSCs can repair nerve damage, the oxidative microenvironment of damaged tissue can induce apoptosis of transplanted stem cells, which weakens the therapeutic efficacy of ADSCs. Resveratrol (Res) is a type of natural polyphenol compound that regulates the proliferation, senescence and differentiation of stem cells. Therefore, we investigated whether incubation of ADSCs with Res improves their to promote peripheral nerve regeneration. ADSCs were cultured in vitro and treated with H2O2 to establish an apoptosis model. The control, H2O2 and Res groups were set up. The cell survival rate was detected by the CCK-8 method. The TUNEL assay was used to detect the apoptosis of the cells. qRT‒PCR was used to analyze the expression of apoptosis-related mRNA, and the effect of Res on the proliferation of ADSCs was investigated. In vivo, 40 SD rats were randomly divided into the control, model, ADSCs and ADSC + Res groups, with 13 rats in each group. The sciatic nerve injury rat model was established by the clamp method. Gait was observed on Days 7, 14, 21, and 28. Sciatic nerve regeneration was detected on Day 28. Res had no effect on the proliferation of ADSCs, and the TUNEL assay confirmed that Res pretreatment could significantly improve H2O2-induced apoptosis in ADSCs. Compared with the control group, caspase-3, Bax and Bcl-2 expression levels were significantly increased in the H2O2 group. Compared with the H2O2 group caspase-3 and Bax expression levels were significantly decreased, and Bcl-2 expression levels were significantly increased in ADSCs + Res group. At 4 weeks after surgery, the functional index of the sciatic nerve in the ADSCs + Res group was significantly higher than that in the model group. On Day 28, the average density of the sciatic nerve myelin sheath in the ADSCs + Res group was significantly increased compared with that in the model group, and Nissl staining showed that the number of motor neurons in the spinal cord was significant compared with that in the model group. Compared with the control group, the wet weight ratio of gastrocnemius muscle and muscle fiber area in ADSCs + Res group were significantly increased. Res enhanced the ability of ADSCs to promote sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
6
|
Al-Azab M, Idiiatullina E, Safi M, Hezam K. Enhancers of mesenchymal stem cell stemness and therapeutic potency. Biomed Pharmacother 2023; 162:114356. [PMID: 37040673 DOI: 10.1016/j.biopha.2023.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a range of cell types, including osteoblasts, chondrocytes, myocytes, and adipocytes. Multiple preclinical investigations and clinical trials employed enhanced MSCs-dependent therapies in treatment of inflammatory and degenerative diseases. They have demonstrated considerable and prospective therapeutic potentials even though the large-scale use remains a problem. Several strategies have been used to improve the therapeutic potency of MSCs in cellular therapy. Treatment of MSCs utilizing pharmaceutical compounds, cytokines, growth factors, hormones, and vitamins have shown potential outcomes in boosting MSCs' stemness. In this study, we reviewed the current advances in enhancing techniques that attempt to promote MSCs' therapeutic effectiveness in cellular therapy and stemness in vivo with potential mechanisms and applications.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Elina Idiiatullina
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China; Department of Therapy and Nursing, Bashkir State Medical University, Ufa 450008, Russia
| | - Mohammed Safi
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Shandong, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China; Department of Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| |
Collapse
|
7
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhao D, Yu W, Xie W, Ma Z, Hu Z, Song Z. Bone marrow-derived mesenchymal stem cells ameliorate severe acute pancreatitis by inhibiting oxidative stress in rats. Mol Cell Biochem 2022; 477:2761-2771. [PMID: 35622186 DOI: 10.1007/s11010-022-04476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/06/2022] [Indexed: 12/17/2022]
Abstract
To investigate whether bone marrow mesenchymal stem cells (BMSCs) attenuate pancreatic injury via mediating oxidative stress in severe acute pancreatitis (SAP). The SAP model was established in rats. Phosphate buffered saline (PBS) or BMSCs were injected into the rats by tail veins. ML385 was used to down-regulate Nrf2 expression in rats. Pancreatic pathological score was used to evaluated pancreatic injury. Inflammatory-associated cytokines, serum lipase and amylase, levels of myeloperoxidase, malondialdehyde, reactive oxygen species and superoxide dismutase, as well as catalase activity were measured for injury severity evaluation. ML385 aggravates oxidative stress in SAP + ML385 group, compared with SAP + PBS group. BMSCs transplantation alleviated pancreatic injury and enhance antioxidant tolerance in SAP + BMSCs group, while ML385 administration weakened this efficacy in SAP + BMSCs + ML385 group. In addition, BMSCs promoted Nrf2 nuclear translocation via PI3K/AKT signaling pathway. Besides, BMSCs reduced inflammatory response by inhibiting NF-κB signaling pathway in SAP. BMSCs can inhibit oxidative stress and reduce pancreatic injury via inducing Nrf2 nuclear translocation in SAP.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
9
|
A novel resveratrol analog upregulates sirtuin 1 and inhibits inflammatory cell infiltration in acute pancreatitis. Acta Pharmacol Sin 2022; 43:1264-1273. [PMID: 34363008 PMCID: PMC9061839 DOI: 10.1038/s41401-021-00744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
Acute pancreatitis (AP), an inflammatory disorder of the pancreas, is a complicated disease without specific drug therapy. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±) -isopaucifloral F. This study aimed to investigate the effect and underlying mechanism of (R)-TML104 on AP. The experimental AP model was induced by caerulein hyperstimulation in BALB/c mice. (R)-TML104 markedly attenuated caerulein-induced AP, as evidenced by decreased pancreatic edema, serum amylase levels, serum lipase levels, and pancreatic myeloperoxidase activity. In addition, (R)-TML104 significantly inhibited the expression of pancreatic chemokines C-C motif chemokine ligand 2 and macrophage inflammatory protein-2 and the infiltration of neutrophils and macrophages. Mechanistically, (R)-TML104 activated AMP-activated protein kinase and induced sirtuin 1 (SIRT1) expression. (R)-TML104 treatment markedly induced the SIRT1-signal transducer and activator of transcription 3 (STAT3) interaction and reduced acetylation of STAT3, thus inhibiting the inflammatory response mediated by the interleukin 6-STAT3 pathway. The effect of (R)-TML104 on SIRT1-STAT3 interaction was reversed by treatment with a SIRT1 inhibitor selisistat (EX527). Together, our findings indicate that (R)-TML104 alleviates experimental pancreatitis by reducing the infiltration of inflammatory cells through modulating SIRT1.
Collapse
|
10
|
González-González A, García-Sánchez D, Alfonso-Fernández A, Haider KH, Rodríguez-Rey JC, Pérez-Campo FM. Regenerative Medicine Applied to the Treatment of Musculoskeletal Pathologies. HANDBOOK OF STEM CELL THERAPY 2022:1123-1158. [DOI: 10.1007/978-981-19-2655-6_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Fan D, Liu C, Guo Z, Huang K, Peng M, Li N, Luo H, Wang T, Cen Z, Cai W, Gu L, Chen S, Li Z. Resveratrol Promotes Angiogenesis in a FoxO1-Dependent Manner in Hind Limb Ischemia in Mice. Molecules 2021; 26:molecules26247528. [PMID: 34946610 PMCID: PMC8707225 DOI: 10.3390/molecules26247528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zeling Guo
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany;
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Correspondence: (S.C.); (Z.L.)
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (S.C.); (Z.L.)
| |
Collapse
|
12
|
Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev 2021; 41:2474-2488. [PMID: 33840113 DOI: 10.1002/med.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a common gastrointestinal disease with no effective therapeutic options, particularly for cases of severe acute and chronic pancreatitis (CP). Mesenchymal stromal cells (MSCs) are multipotent cells with diverse biological properties, including directional migration, paracrine, immunosuppressive, and antiinflammatory effects, which are considered an ideal candidate cell type for repairing tissue damage caused by various pathogenies. Several researchers have reported significant therapeutic efficacy of MSCs in animal models of acute and CP. However, the specific underlying mechanisms are yet to be clarified and clinical application of MSCs as pancreatitis therapy has rarely been reported. This review mainly focuses on the potential and challenges in clinical application of MSCs for treatment of acute and CP, along with discussion of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhao H, Jiang S. MiR-204-5p Performs a Protective Effect on Cerulein-Induced Rat Pancreatic Acinar Cell AR42J Cell Damage by Targeting Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma and Regulating PI3K/Hippo Pathways. Pancreas 2021; 50:243-250. [PMID: 33565802 DOI: 10.1097/mpa.0000000000001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This research plans to address the function of miR-204-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) in cerulein-induced acute pancreatitis (AP). METHODS Rat pancreatic acinar cell AR42J was stimulated by 100 nmol/L of cerulein to mimic the situation in AP. Gene Expression Omnibus database was used to select differentially expressed genes. StarBase database and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to select the target genes of miR-204-5p, which were further affirmed by dual luciferase assay. The biological behaviors of AR42J cells were measured by cell proliferation and flow cytometry assays. Quantitative real-time polymerase chain reaction and western blot assays were executed to assess YWHAG expression. The secretion of C-C Motif Chemokine Ligand 2/Timp metallopeptidase inhibitor 1 in AR42J cells was evaluated by enzyme-linked immunosorbent assay. The protein expression of YAP1/p-YAP1/PI3K/p-PI3K was measured by western blot. RESULTS miR-204-5p expression was profoundly reduced in cerulein-induced AP model. YWHAG was upregulated in cerulein-induced AP model and related to C-C Motif Chemokine Ligand 2/Timp1. In addition to the negative association between miR-204-5p and YWHAG, the alleviation impact of miR-204-5p mimic on cerulein-induced AR42J cell damage was blocked by YWHAG overexpression and PI3K/Hippo signaling pathways activation. CONCLUSIONS These observations indicated that the alleviation impact of miR-204-5p on cerulein-induced AR42J cell damage was mediated via YWHAG and PI3K/Hippo signaling pathways.
Collapse
Affiliation(s)
- Hongbo Zhao
- From the Department of Gastroenterology, Central Hospital of Shanxian, Heze
| | - Shaolian Jiang
- Department of Gastroenterology, The Second People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
14
|
Agah S, Akbari A, Sadeghi E, Morvaridzadeh M, Basharat Z, Palmowski A, Heshmati J. Resveratrol supplementation and acute pancreatitis: A comprehensive review. Biomed Pharmacother 2021; 137:111268. [PMID: 33493966 DOI: 10.1016/j.biopha.2021.111268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol, a natural polyphenolic ingredient extracted from herbs, suppresses oxidative stress and inflammation. We performed a comprehensive review to find any evidence about the effects of Resveratrol on acute pancreatitis (AP). Resveratrol has been found to directly impact cytokine generation. As these factors play a crucial role in the pathophysiology of AP, resveratrol might attenuate AP and its complications. Mechanistically, resveratrol exerts its pharmacological effects through anti-inflammatory and antioxidant mechanisms via interaction with different signaling molecules and transcription factors. Indeed, resveratrol might prove to be an effective therapeutic component for AP treatment in the future. In this review, we shed light on potential most recent pathways through which resveratrol might impact the management and control of AP.
Collapse
Affiliation(s)
- Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Andriko Palmowski
- Department of Rheumatology and Clinical Immunology, Charite - University Medicine Berlin, Germany
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Saikosaponin A-Induced Gut Microbiota Changes Attenuate Severe Acute Pancreatitis through the Activation of Keap1/Nrf2-ARE Antioxidant Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9217219. [PMID: 33204401 PMCID: PMC7652616 DOI: 10.1155/2020/9217219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Objective Severe acute pancreatitis (SAP) is a serious and life-threatening disease associated with multiple organ failure and a high mortality rate and is accompanied by distinct oxidative stress and inflammatory responses. Saikosaponin A has strong antioxidant properties and can affect the composition of gut microbiota. We sought to determine the effects of Saikosaponin A interventions on SAP by investigating the changes of gut microbiota and related antioxidant signaling. Methods A SAP model was established in Sprague-Dawley (SD) rats through the injection of sodium taurocholate into the biliopancreatic duct and confirmed by elevated levels of serum lipase and amylase. The model was fed a standard diet either with saline solution or with Saikosaponin A. Fecal microbiota transplantation (FMT) from Saikosaponin A-induced rats into the rat model was performed to test the effects of gut microbiota. The composition of gut microbiota was analyzed by using 16S rRNA gene sequencing. We measured apoptotic status, inflammatory biomarkers, and Keap1-Nrf2-ARE ((Kelch-like ECH-associated protein 1) nuclear factor erythroid 2-related factor 2-antioxidant response element) antioxidant signaling. Results Saikosaponin A intervention attenuated SAP lesions and reduced the levels of serum amylase and lipase, oxidative stress, and inflammatory responses by reducing pathological scores and affecting the serum level of oxidative and inflammatory factors. Meanwhile, the expression of Keap1-Nrf2-ARE was increased. Saikosaponin A intervention improved microbiota composition by increasing the relative abundance of Lactobacillus and Prevotella species. FMT resulted in similar results as those caused by the Saikosaponin A intervention, suggesting Saikosaponin A may exert its function via the improvement of gut microbiota composition. Conclusions Saikosaponin A-induced gut microbiota changes attenuate SAP progression in the rat model and may be a potential natural drug for adjuvant treatment of SAP. Further work is needed to clear up the points.
Collapse
|
16
|
Song G, Zhou J, Song R, Liu D, Yu W, Xie W, Ma Z, Gong J, Meng H, Yang T, Song Z. Long noncoding RNA H19 regulates the therapeutic efficacy of mesenchymal stem cells in rats with severe acute pancreatitis by sponging miR-138-5p and miR-141-3p. Stem Cell Res Ther 2020; 11:420. [PMID: 32977843 PMCID: PMC7519546 DOI: 10.1186/s13287-020-01940-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Patients with severe acute pancreatitis (SAP), which is characterized by high morbidity and mortality, account for an increasing medical burden worldwide. We previously found that mesenchymal stem cells (MSCs) could attenuate SAP and that expression of long noncoding RNA H19 (LncRNA H19) was upregulated in rats receiving MSCs. In the present study, we investigated the mechanisms of LncRNA H19 regulating the therapeutic efficacy of MSCs in the alleviation of SAP. Methods MSCs transfected with LncRNA H19 overexpression and knockdown plasmids were intravenously injected into rats 12 h after sodium taurocholate (NaT) administration to induce SAP. Results Overexpressing LncRNA H19 in MSCs significantly enhanced the anti-inflammatory capacity of the MSCs, inhibited autophagy via promotion of focal adhesion kinase (FAK)-associated pathways, and facilitated cell proliferation by increasing the level of β-catenin in rats with SAP. LncRNA H19 functioned as a competing endogenous RNA by sponging miR-138-5p and miR-141-3p. Knocking down miR-138-5p in MSCs increased the expression of protein tyrosine kinase 2 (PTK2, encoding FAK) to suppress autophagy, while downregulating miR-141-3p enhanced the level of β-catenin to promote cell proliferation. Conclusions In conclusion, LncRNA H19 effectively increased the therapeutic efficacy of MSCs in rats with SAP via the miR-138-5p/PTK2/FAK and miR-141-3p/β-catenin pathways.
Collapse
Affiliation(s)
- Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.,Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ruimei Song
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhilong Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|