1
|
Piriyaprasath K, Kakihara Y, Hasegawa M, Iwamoto Y, Hasegawa Y, Fujii N, Yamamura K, Okamoto K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024; 16:2868. [PMID: 39275184 PMCID: PMC11397166 DOI: 10.3390/nu16172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This narrative review provides an overview of current knowledge on the impact of nutritional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs). Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation revealed that the causal links between nutritional changes and craniofacial pain remain unclear. However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals, polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines, and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins, minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the 38 articles published since 2013. Our investigation indicates that current evidence is insufficient to assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic intervention in TMDs. Further support from longitudinal and randomized controlled studies and well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical intervention and understand their underlying mechanisms in TMDs.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoko Hasegawa
- Division of Comprehensive Prosthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noritaka Fujii
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
2
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
3
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Lopez-Garzon M, Canta A, Chiorazzi A, Alberti P. Gait analysis in chemotherapy-induced peripheral neurotoxicity rodent models. Brain Res Bull 2023; 203:110769. [PMID: 37748696 DOI: 10.1016/j.brainresbull.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Gait analysis could be used in animal models as an indicator of sensory ataxia due to chemotherapy-induced peripheral neurotoxicity (CIPN). Over the years, gait analysis in in vivo studies has evolved from simple observations carried out by a trained operator to computerised systems with machine learning that allow the quantification of any variable of interest and the establishment of algorithms for behavioural classification. However, there is not a consensus on gait analysis use in CIPN animal models; therefore, we carried out a systematic review. Of 987 potentially relevant studies, 14 were included, in which different methods were analysed (observation, footprint and CatWalk™). We presented the state-of-the-art of possible approaches to analyse sensory ataxia in rodent models, addressing advantages and disadvantages of different methods available. Semi-automated methods may be of interest when preventive or therapeutic strategies are evaluated, also considering their methodological simplicity and automaticity; up to now, only CatWalk™ analysis has been tested. Future studies should expect that CIPN-affected animals tend to reduce hind paw support due to pain, allodynia or loss of sensation, and an increase in swing phase could or should be observed. Few available studies documented these impairments at the last time point, and only appeared later on respect to other earlier signs of CIPN (such as altered neurophysiological findings). For that reason, gait impairment could be interpreted as late repercussions of loss of sensory.
Collapse
Affiliation(s)
- Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; A02-Cuídate, Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain; Unit of Excellence On Exercise and Health (UCEES), University of Granada, Granada, Spain; Sport and Health Research Center (IMUDs), Granada, Spain
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
5
|
Abstract
ABSTRACT Peripheral nerve injury is a common injury disease. Understanding of the mechanisms of periphery nerve repair and regeneration after injury is an essential prerequisite for treating related diseases. Although the biological mechanisms of peripheral nerve injury and regeneration have been studied comprehensively, the clinical treatment methods are still limited. The bottlenecks of the treatments are the shortage of donor nerves and the limited surgical precision. Apart from the knowledge regarding the fundamental characteristics and physical processes of peripheral nerve injury, numerous studies have found that Schwann cells, growth factors, and extracellular matrix are main factors affecting the repair and regeneration process of injured nerves. At present, the therapeutical methods of the disease include microsurgery, autologous nerve transplantation, allograft nerve transplantation and tissue engineering technology. Tissue engineering technology, which combines seed cells, neurotrophic factors, and scaffold materials together, is promising for treating the patients with long-gapped and large nerve damage. With the development of neuron science and technology, the treatment of peripheral nerve injury diseases will continue being improved.
Collapse
|
6
|
Liao Y, Guo C, Wen A, Bai M, Ran Z, Hu J, Wang J, Yang J, Ding Y. Frankincense-Myrrh treatment alleviates neuropathic pain via the inhibition of neuroglia activation mediated by the TLR4/MyD88 pathway and TRPV1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154540. [PMID: 36379093 DOI: 10.1016/j.phymed.2022.154540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neuroglia are important modulators of neuronal functionality, and thus play an integral role in the pathogenesis and treatment of neuropathic pain (NP). According to traditional Chinese medicine, Frankincense-Myrrh is capable of "activating blood and dissipating blood stasis", and as such these two biological compounds are commonly used to treat NP, however, the mechanisms underlying the efficacy of such treatment are unclear. PURPOSE This study aimed to further elucidate the protective effects associated with the Frankincense-Myrrh treatment of NP. METHODS A chronic sciatic nerve compression injury (CCI) model of NP was established, after which animals were gavaged with Frankincense, Myrrh, Frankincense-Myrrh, or the positive control drug pregabalin for 14 days. Network pharmacology approaches were used to identify putative pathways and targets associated with the Frankincense-Myrrh-mediated treatment of NP, after which these targets were subjected to in-depth analyses. The impact of TLR4 blockade on NP pathogenesis was assessed by intrathecally administering a TLR4 antagonist (LRU) or the MyD88 homodimerization inhibitory peptide (MIP). RESULTS Significant alleviation of thermal and mechanical hypersensitivity in response to Frankincense and Myrrh treatment was observed in NP model mice, while network pharmacology analyses suggested that the pathogenesis of NP may be related to TLR4/MyD88-mediated neuroinflammation. Consistently, Frankincense-Myrrh treatment was found to reduce TLR4, MyD88, and p-p65 expression in spinal dorsal horn neuroglia from treated animals, in addition to inhibiting neuronal TRPV1 and inflammatory factor expression. Intrathecal LRU and MIP delivery were sufficient to alleviate thermal and mechanical hyperalgesia in these CCI model mice, with concomitant reductions in neuronal TRPV1 expression and neuroglial activation in the spinal dorsal horn. CONCLUSION These data suggest that Frankincense-Myrrh treatment was sufficient to alleviate NP in part via inhibiting TLR4/MyD88 pathway and TRPV1 signaling activity. Blocking TLR4 and MyD88 activation may thus hold value as a means of treating NP.
Collapse
Affiliation(s)
- Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Ran
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jianhua Yang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China; Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Separation and evaluation of potential antioxidant, analgesic, and anti-inflammatory activities of limonene-rich essential oils from Citrus sinensis (L.). OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
The peel of Citrus sinensis (L.) Osbeck is a source of essential oils, particularly limonene, which is this plant’s characteristic molecule. The main goal of this study was to test the potential analgesic and anti-inflammatory properties of limonene-rich essential oils derived from the peel of C. sinensis L. (orange) in vivo, as well as their antioxidant activity in vitro. Carrageenan-induced paw edema in Wistar rats and the formalin test in Swiss albino mice were used to examine anti-inflammatory activity. The analgesic activity was assessed using hot plate and acetic acid writhing tests, while the antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power methods. The essential oil (EO) safety was determined using an acute toxicity experiment on mice. The phytochemical analysis confirmed the existence of limonene as the primary molecule (88.94%), and in vivo experiments revealed that the EO had a significant pain and inflammation-relieving effect, especially at the dose of 50 mg/kg, when compared to the used control drugs. The acute toxicity evaluation reported this EO’s safety. This study contributes to the pharmacological valorization of the peel of C. sinensis L., confirming that, in addition to its numerous cosmetic and industrial uses, it may be effective in the treatment of inflammatory and pain-related illnesses.
Collapse
|
8
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
9
|
Quan G, Ren B, Xu J, Zhou J, Wu G, Li Q, Li J. Effect and Mechanism of LncRNA HOTAIR on Migration, Apoptosis and Proliferation of Hepatocellular Carcinoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title>
We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch
assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration,
apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation
rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis,
proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>
Collapse
Affiliation(s)
- Gang Quan
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Bo Ren
- Department of Ultrasound Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| |
Collapse
|
10
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
11
|
Chen TC, da Fonseca CO, Levin D, Schönthal AH. The Monoterpenoid Perillyl Alcohol: Anticancer Agent and Medium to Overcome Biological Barriers. Pharmaceutics 2021; 13:2167. [PMID: 34959448 PMCID: PMC8709132 DOI: 10.3390/pharmaceutics13122167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
Collapse
Affiliation(s)
- Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Clovis O. da Fonseca
- Department of Neurological Surgery, Federal Hospital of Ipanema, Rio de Janeiro 22411-020, Brazil;
| | | | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Li Y, Zhang Z, Xu K, Du S, Gu X, Cao R, Cui S. Minocycline alleviates peripheral nerve adhesion by promoting regulatory macrophage polarization via the TAK1 and its downstream pathway. Life Sci 2021; 276:119422. [PMID: 33781833 DOI: 10.1016/j.lfs.2021.119422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
AIMS Inflammation plays a key role in peripheral nerve adhesion and often leads to severe pain and nerve dysfunction. Minocycline was reported to have potent anti-inflammatory effects and might be a promising drug to prevent or attenuate peripheral nerve adhesion. The present study aimed to clarify whether minocycline contributes to nerve adhesion protection and its underlying mechanism. MATERIALS AND METHODS Rats with sciatic nerve adhesion induced by glutaraldehyde glue (GG) were intraperitoneally injected with minocycline or saline every 12 h for 7 consecutive days. After that, the adhesion score, Ashcroft score, demyelination, macrophage polarization and inflammatory factors in peripheral nerve adhesion tissues or tissues in sham group were determined with histological staining, western blot and real time-PCR. Murine macrophage RAW264.7 cells were stimulated by LPS alone or together with minocycline at different concentrations and time duration to study the mechanism of minocycline in alleviating nerve adhesion. KEY FINDINGS We found that minocycline treatment reduced the adhesion score, Ashcroft score, the growth of scar tissue, demyelination, and macrophage recruitment. Moreover, minocycline significantly and dose-dependently promoted regulatory macrophage polarization but decreased pro-inflammatory macrophage polarization. Furthermore, mechanism studies showed that TAK1 and its downstream pathway p38/JNK/ERK1/2/p65 were inhibited by minocycline, which led to lower IL-1β and TNFα expression, but increased IL-10 expression. SIGNIFICANCE Altogether, these results suggest that minocycline is highly effective against peripheral nerve adhesion through anti-fibrosis, anti-inflammation, and myelination protection, making it a highly promising candidate for treating adhesion-related disorders.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Ke Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Xiaosong Gu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China.
| | - Rangjuan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| |
Collapse
|
13
|
Gentile D, Berliocchi L, Russo R, Bagetta G, Corasaniti MT. Effects of the autophagy modulators d-limonene and chloroquine on vimentin levels in SH-SY5Y cells. Biochem Biophys Res Commun 2020; 533:764-769. [PMID: 32988589 PMCID: PMC7518972 DOI: 10.1016/j.bbrc.2020.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
The molecular target and mechanism by which d-limonene induces LC3 lipidation and autophagosome formation remain elusive. Here, we report that this monoterpene rapidly enhances Ca2+ levels in SH-SY5Y cells; yet this effect does not lead to calpain- or caspase-mediated proteolysis of α-spectrin, nor calpain activity is required for the established enhancement of LC3-II levels by d-limonene. However, d-limonene rapidly reduced vimentin levels, an unexpected effect also induced by the autophagy inhibitor chloroquine (CQ). The magnitude of vimentin reduction parallels accumulation of LC3-II caused by a brief incubation with d-limonene or CQ. For longer exposure (48 h), d-limonene does not reduce vimentin, nor it increases LC3-II levels; conversely, a clear reduction of vimentin along with a massive accumulation of LC3-II is evident in cells treated with CQ. Vimentin participates in organelle positioning and in other cellular processes that have linked this intermediate filament protein to various diseases, including cancer, inflammatory and autoimmune disorders, and to virus replication and internalization. Our findings suggest an inverse relationship between vimentin reduction and LC3-II accumulation, whose causal link needs to be examined. Further experiments are needed to dissect the role of vimentin reduction in the mechanisms through which CQ impairs fusion of autophagosome with lysosomes as well as in other effects of this drug.
Collapse
Affiliation(s)
- Debora Gentile
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Via Pietro Bucci, 87036, Rende (Cosenza), Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Via Pietro Bucci, 87036, Rende (Cosenza), Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|