1
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Shi ZY, Sun K, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. Features and prognostic significance of soluble TIM-3 and its ligands Gal-9 and CEACAM1 levels in the diagnostic bone marrow of adult acute myeloid leukemia patients. J Leukoc Biol 2024; 117:qiae191. [PMID: 39267264 DOI: 10.1093/jleuko/qiae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
The prognostic significance of soluble immune checkpoint molecule TIM-3 and its ligands in the plasma has been illustrated in various solid tumors, but such study in newly diagnosed acute myeloid leukemia (AML) remains absent. Soluble TIM-3, Gal-9, and CEACAM1 levels in bone marrow plasma samples collected from 90 adult AML patients at diagnosis and 12 healthy donors were measured by enzyme-linked immunosorbent assays, and 16 AML patients were simultaneously tested cell membrane TIM-3 expression by multicolor flow cytometry. AML patients had significantly elevated soluble TIM-3 levels and similar soluble Gal-9 and CEACAM1 levels compared with healthy donors (P = 0.0003, 0.26, and 0.96, respectively). In the whole cohort, a high soluble TIM-3 level was the sole independent adverse prognostic factor for relapse-free survival (RFS) (P = 0.0060), and together with adverse European LeukemiaNet genetic risk they were independent poor prognostic factors for event-free survival (P = 0.0030 and 0.0040, respectively). A high soluble CEACAM1 level was significantly related to lower RFS (P = 0.028). In addition, a high soluble Gal-9 level had a significant association with lower RFS in patients receiving allogeneic hematopoietic stem cell transplantation at the first complete remission (P = 0.037). Furthermore, soluble TIM-3 level tended to have positive correlation with the percentage of nonblast myeloid TIM-3+ cells in nucleated cells in AML (r = 0.48, P = 0.073). Therefore, the high soluble TIM-3 level in the diagnostic BM plasma predicted poor outcome in adult AML patients, and a high sGal-9 level was associated with relapse after allogeneic hematopoietic stem cell transplantation.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/mortality
- Female
- Male
- Middle Aged
- Adult
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/blood
- Antigens, CD/blood
- Antigens, CD/metabolism
- Prognosis
- Cell Adhesion Molecules/blood
- Aged
- Galectins/blood
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Young Adult
- Ligands
- Disease-Free Survival
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Adolescent
Collapse
Affiliation(s)
- Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| |
Collapse
|
3
|
Li M, Zhao X. Leukocyte immunoglobulin-like receptor B4 (LILRB4) in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2697-2711. [PMID: 38973293 PMCID: PMC11611246 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
4
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
5
|
Pang N, Tudahong S, Zhu Y, He J, Han C, Chen G, Wang W, Wang J, Ding J. Galectin-9 alleviates acute graft-versus-host disease after haplo-hematopoietic stem cell transplantation by regulating regulatory T cell/effector T cell imbalance. Immun Inflamm Dis 2024; 12:e1177. [PMID: 38353382 PMCID: PMC10865418 DOI: 10.1002/iid3.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) arises from the imbalance of host T cells. Galectin-9 negatively regulates CD4 effector T cell (Th1 and Th17) function by binding to Tim-3. However, the relationship between Galectin-9/Tim-3 and CD4+ T subsets in patients with aGVHD after Haplo-HSCT (haploidentical peripheral blood hematopoietic stem cell transplantation) has not been fully elucidated. Here, we investigated the role of Galectin-9 and CD4+ T subsets in aGVHD after haplo-HSCT. METHODS Forty-two patients underwent Haplo-HSCT (26 without aGVHD and 16 with aGVHD), and 20 healthy controls were included. The concentrations of Galectin-9, interferon-gamma (IFN-γ), interleukin (IL)-4, transforming growth factor (TGF)-β, and IL-17 in the serum and culture supernatant were measured using enzyme-linked immunosorbent assay or cytometric bead array. The expression levels of Galectin-9, PI3K, p-PI3K, and p-mTOR protein were detected by western blot analysis. Flow cytometry was used to analyze the proportions of CD4+ T cell subsets. Bioinformatics analysis was performed. RESULTS In patients with aGVHD, regulatory T (Treg) cells and Galectin-9 decreased, and the Th1, Th17, and Treg cells were significantly imbalanced. Moreover, Treg and Galectin-9 were rapidly reconstituted in the early stage of patients without aGVHD after Haplo-HSCT, but Th17 cells were reconstituted slowly. Furthermore, Tim-3 upregulation on Th17 and Th1 cells was associated with excessive activation of the PI3K/AKT pathway in patients with aGVHD. Specifically, in vitro treatment with Galectin-9 reduced IFN-γ and IL-17 production while augmenting TGF-β secretion. Bioinformatics analysis suggested the potential involvement of the PI3K/AKT/mTOR pathway in aGVHD. Mechanistically, exogenous Galectin-9 was found to mitigate aGVHD by restoring the Treg/Teffs (effector T cells) balance and suppressing PI3K. CONCLUSION Galectin-9 may ameliorate aGVHD after haplo-HSCT by modulating Treg/Teffs balance and regulating the PI3K/AKT/mTOR pathway. Targeting Galectin-9 may hold potential value for the treatment of aGVHD.
Collapse
Affiliation(s)
- Nannan Pang
- Department of PathologyThe First Affiliated Hospital of Shihezi UniversityShiheziChina
| | - Shabaaiti Tudahong
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous Region Research Institute of HematologyUrumqiChina
| | - Yuejie Zhu
- Reproductive Fertility Assistance CenterThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Jiang He
- Department of Laboratory MedicineGeneral Hospital of Xinjiang Military Region, PLAUrumqiChina
| | - Chunxia Han
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous Region Research Institute of HematologyUrumqiChina
| | - Gang Chen
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous Region Research Institute of HematologyUrumqiChina
| | - Weiguo Wang
- Department of Urology, Suzhou Hospital, Affiliated Hospital of Medical SchoolNanjing UniversitySuzhouChina
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease ResearchTraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Jianbing Ding
- Reproductive Fertility Assistance CenterThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
6
|
Wang Y, Sun Y, Deng S, Liu J, Yu J, Chi H, Han X, Zhang Y, Shi J, Wang Y, Quan Y, Li H, Xu J. Discovery of galectin-8 as an LILRB4 ligand driving M-MDSCs defines a class of antibodies to fight solid tumors. Cell Rep Med 2024; 5:101374. [PMID: 38232701 PMCID: PMC10829871 DOI: 10.1016/j.xcrm.2023.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/16/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.
Collapse
Affiliation(s)
- Yiting Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai, China
| | - Shouyan Deng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianghong Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Han
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawei Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yungang Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | - Hai Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Pang N, Yu M, Xu J, Yuan H, Chen G, Wang D, Han C, Wang W, Ding J, Jiang M. The level of Tim-3+CD8+ T cells can serve as a potential marker for evaluating the severity of acute graft-versus-host disease after haplo-PBSCT. Braz J Med Biol Res 2023; 56:e12997. [PMID: 38126537 PMCID: PMC10729645 DOI: 10.1590/1414-431x2023e12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
Early and accurate diagnosis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation is crucial for the prognosis of patients. This study identified a potential biomarker for the severity of aGVHD after human leukocyte antigen (HLA)-haploidentical peripheral blood hematopoietic stem cell transplantation (haplo-PBSCT). We included 20 healthy subjects and 57 patients who underwent haplo-PBSCT. Of these patients, 22 developed aGVHD after haplo-PBSCT. The results showed that patients with aGVHD had significantly increased levels of Tim-3+/Perforin+/Granzyme B+CD8+ T cells, but significantly decreased Galectin-9. The differences in Galectin-9 and Tim-3+/Granzyme B+CD8+ T cells between grade I-II aGVHD and III-IV aGVHD were also significant. In vitro, the apoptosis of CD8+ T cells from aGVHD patients was significantly increased after Tim-3/Galectin-9 pathway activation, which decreased Granzyme B secretion. As revealed by univariate analysis, the level of Tim-3+CD8+ T cells was a risk factor for severe aGVHD. ROC analysis demonstrated that high levels of Tim-3+CD8+ T cells had a significant diagnostic value for severe aGVHD, with an area under the curve of 0.854 and cut-off value of 14.155%. In conclusion, the binding of Tim-3 with exogenous Galectin-9 can promote apoptosis of CD8+ T cells and affect the secretion of Granzyme B. Tim-3+CD8+ T cells have the potential to serve as immunological markers for assessing the severity of aGVHD after haplo-PBSCT and identifying patients at a higher risk for severe aGVHD.
Collapse
Affiliation(s)
- Nannan Pang
- Department of Pathology, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingkai Yu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianli Xu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Hailong Yuan
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Gang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Dong Wang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Chunxia Han
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Weiguo Wang
- Department of Urology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianbing Ding
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ming Jiang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| |
Collapse
|
8
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
9
|
Xiong H, Xue G, Zhang Y, Wu S, Zhao Q, Zhao R, Zhou N, Xie Y. Effect of exogenous galectin-9, a natural TIM-3 ligand, on the severity of TNBS- and DSS-induced colitis in mice. Int Immunopharmacol 2023; 115:109645. [PMID: 36610329 DOI: 10.1016/j.intimp.2022.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1β, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuting Zhang
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shuang Wu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Rulin Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
10
|
Resolution of Inflammation in Acute Graft-Versus-Host-Disease: Advances and Perspectives. Biomolecules 2022; 12:biom12010075. [PMID: 35053223 PMCID: PMC8773806 DOI: 10.3390/biom12010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.
Collapse
|
11
|
Knudsen AM, Rudkjøbing SJ, Sørensen MD, Dahlrot RH, Kristensen BW. Expression and Prognostic Value of the Immune Checkpoints Galectin-9 and PD-L1 in Glioblastomas. J Neuropathol Exp Neurol 2021; 80:541-551. [PMID: 33990845 DOI: 10.1093/jnen/nlab041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapeutic targeting of the PD-1/PD-L1 axis has been widely implemented for treatment of several cancer types but shown disappointing results in glioblastomas (GBMs), potentially due to compensatory mechanisms of other expressed immune checkpoints. Galectin-9 is an immune-checkpoint protein that facilitates T-cell exhaustion and apoptosis and could be a potential target for immune-checkpoint inhibition. A total of 163 GBMs IDH wildtype were immunostained with anti-Galectin-9 and PD-L1 antibodies. Software-based quantitation of immunostainings was performed and co-expression was investigated using double immunofluorescence. Both Galectin-9 and PD-L1 protein expression were found in all 163 tumors and showed a significant positive correlation (p = 0.0017). Galectin-9 expression varied from 0.01% to 32% (mean = 6.61%), while PD-L1 membrane expression ranged from 0.003% to 0.14% (mean = 0.048%) of total tumor area. Expression of Galectin-9 and PD-L1 was found on both microglia/macrophages and tumor cells, and colocalization of both markers was found in 88.3% of tumors. In multivariate analysis, neither Galectin-9 (HR = 0.99), PD-L1 (HR = 1.05), nor their combinations showed prognostic value. Galectin-9 and PD-L1 were expressed in all investigated GBMs and the majority of patients had co-expression, which may provide rationale for multi-targeted immune checkpoint inhibition.
Collapse
Affiliation(s)
- Arnon Møldrup Knudsen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sisse Josephine Rudkjøbing
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Mia Dahl Sørensen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Rikke Hedegaard Dahlrot
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- From the Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Demosthenous C, Sakellari I, Douka V, Papayanni PG, Anagnostopoulos A, Gavriilaki E. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Graft-versus-Host Disease (GVHD). J Clin Med 2021; 10:jcm10102050. [PMID: 34064671 PMCID: PMC8150814 DOI: 10.3390/jcm10102050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Myeloid-derived suppressor cells (MDSCs) are implicated in the complex interplay involving graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HCT) in hematologic malignancies. Methods: A review of literature through PubMed was undertaken to summarize the published evidence on the pathophysiology and clinical implications of MDSCs in allo-HCT. Literature sources published in English since 1978 were searched, using the terms Natural Suppressor (NS) cells, MDSCs, GVHD, and allo-HCT. Results: In vivo studies demonstrated that MDSCs derived from mobilization protocols could strongly suppress allo-responses mediated by T cells and enhance T-Reg activity, thus inhibiting GVHD toxicity. However, the influence of MDSCs on the GVL effect is not fully defined. Conclusions: The induction or maintenance of MDSC suppressive function would be advantageous in suppressing inflammation associated with GVHD. Pathways involved in MDSC metabolism and the inflammasome signaling are a promising field of study to elucidate the function of MDSCs in the pathogenesis of GVHD and translate these findings to a clinical setting.
Collapse
|
13
|
Abstract
Background Galectins are proteins that bind β-galactosides such as N-acetyllactosamine present in N-linked and O-linked glycoproteins and that seem to be implicated in inflammatory and immune responses as well as fibrotic mechanisms. This preliminary study investigated serum galectins as clinical biomarkers in lung transplant patients with chronic lung allograft dysfunction (CLAD), phenotype bronchiolitis obliterans syndrome (BOS). Materials and Methods Nineteen lung transplant patients [median age (IQR), 55 (45–62) years; 53% males] were enrolled in the study. Peripheral blood concentrations of galectins-1, 3 and 9 were determined with commercial ELISA kits. Results Galectin-1 concentrations were higher in BOS than in stable LTX patients (p = 0.0394). In logistic regression analysis, testing BOS group as dependent variable with Gal-1 and 3 as independent variables, area under the receiver operating characteristics (AUROC) curve was 98.9% (NPV 90% and PPV 88.9%, p = 0.0003). With the stable LTX group as dependent variable and Gal-1, 3 and 9 as independent variables, AUROC was 92.6% (NPV 100% and PPV 90%, p = 0.0023). In stable patients were observed an inverse correlation of Gal-3 with DLCO% and KCO%, and between Gal-9 and KCO%. Conclusion Galectins-1, 3 and 9 are possible clinical biomarkers in lung transplant patients with diagnostic and prognostic meaning. These molecules may be directly implicated in the pathological mechanisms of BOS. The hypothesis that they could be new therapeutic targets in BOS patients is intriguing and also worth exploring.
Collapse
|