1
|
Liu H, Fu M, Ren Z, Liu Z, Cao X, Chen J, Pang Y, Liu J. Cadmium exposure induces inflammation, oxidative stress and DNA damage in HUVEC and promotes THP-1 adhesion: a possible mechanism on the formation of Atherosclerotic plaque. Toxicology 2025:154046. [PMID: 39778856 DOI: 10.1016/j.tox.2025.154046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Observational studies have shown that cadmium exposure increases the risk of cardiovascular disease, but the underlying mechanism is still unclear. Atherosclerotic plaque can cause vascular obstruction, which is important for the death from cardiovascular disease. Cell damage and monocyte adhesion are two early events in atherosclerotic plaque formation that can be induced by cadmium exposure, but the mechanism remains to be determined. This study was carried out to investigate the toxicity of cadmium in HUVECs and the effect of cadmium on the adhesion of THP-1 cells, and further explored the possible mechanisms. Rhodamine staining, DCFH-DA staining, Hoechst33258 staining, morphological observation and western blot were used to detect mitochondrial membrane potential, ROS, apoptosis, cell adhesion, signaling pathways and cell adhesion factors respectively. The results indicated that cadmium exposure increased the level of ROS, activated MAPK signaling pathway and resulted in cellular oxidative stress in HUVECs. Exposure to cadmium made nuclear shrinkage, activated DNA damage response pathways and mitochondria-mediated intrinsic apoptosis pathway in HUVECs. Cadmium exposure activated the NLRP3 inflammasome and NF-κB signaling pathway, led to the upregulation of inflammatory cytokines in HUVECs. In addition, cadmium exposure also upregulated the adhesion factors including ICAM-1, VCAM-1 and E-Selectin via NF-κB signaling pathway and resulted in the adhesion of THP-1 cell. The present study elucidated that cadmium could damage the HUVECs and promote the adhesion of THP-1 cells, which clarified the toxicity of cadmium in HUVECs and revealed the possible mechanism for the occurrence of cardiovascular disease induced by cadmium.
Collapse
Affiliation(s)
- Haotian Liu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Mingyang Fu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Ziqi Ren
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Zhaoshuo Liu
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jiahe Chen
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Yulin Pang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
2
|
Park HS, Lee BC, Chae DH, Yu A, Park JH, Heo J, Han MH, Cho K, Lee JW, Jung JW, Dunbar CE, Oh MK, Yu KR. Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation. Stem Cell Res Ther 2024; 15:145. [PMID: 38764093 PMCID: PMC11103961 DOI: 10.1186/s13287-024-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Heo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Myoung Hee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Keonwoo Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Zhao Z, Tong Y, Kang Y, Qiu Z, Li Q, Xu C, Wu G, Jia W, Wang P. Sodium butyrate (SB) ameliorated inflammation of COPD induced by cigarette smoke through activating the GPR43 to inhibit NF-κB/MAPKs signaling pathways. Mol Immunol 2023; 163:224-234. [PMID: 37864932 DOI: 10.1016/j.molimm.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Cigarette smoke is recognized as a major trigger for individuals with chronic obstructive pulmonary disease (COPD), leading to an amplified inflammatory response. The onset and progression of COPD are affected by multiple environmental and genetic risk factors, such as inflammatory mechanisms, oxidative stress, and an imbalance between proteinase and antiprotease. As a result, conventional drug therapies often have limited effectiveness. This study aimed to investigate the anti-inflammatory effect of sodium butyrate (SB) in COPD and explore its molecular mechanism, thereby deepening our understanding of the potential application of SB in the treatment of COPD. In our study, we observed an increase in the mRNA and protein expressions of inflammatory factors interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Matrix metallopeptidase 9 (MMP9) and MMP12 in both NR8383 cell and rat models of COPD. However, these expressions were significantly reduced after SB treatment. Meanwhile, SB treatment effectively decreased the phosphorylation levels of nuclear transcription factor-kappa B (NF-κB) p65, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear translocation of these proteins in the COPD cells, leading to a reduction in the expression of various inflammatory cytokines. Additionally, SB also inhibited the expression level of the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 in the cigeratte smoke extract (CSE)-stimulated cells. Our results showed that CSE down-regulated the mRNA levels of G-protein-coupled receptor 43 (GPR43) and GPR109A, while SB only up-regulated the expression of GPR43 and had no effect on GPR109A. Moreover, additional analysis demonstrated that the knockdown of GPR43 diminishes the anti-inflammatory effects of SB. It is evident that siRNA-mediated knockdown of GPR43 prevented the reduction in mRNA expression of IL-1β, IL-6, TNF-α, MMP9, and MMP12, as well as the expression of phosphorylated proteins NF-κB p65, JNK, and p38 MAPKs with SB treatment. These findings revealed a SB/GPR43 mediated pathway essential for attenuating pulmonary inflammatory responses in COPD, which may offer potential new treatments for COPD.
Collapse
Affiliation(s)
- Zhijun Zhao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhuoran Qiu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiujie Li
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chao Xu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Geng Wu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
4
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
5
|
Liu J, Fu M, Miao J, Sun Y, Zhu R, Liu C, Bi R, Wang S, Cao X. The toxicity of cooking oil fumes on human bronchial epithelial cells through ROS-mediated MAPK, NF-κB signaling pathways and NLRP3 inflammasome. ENVIRONMENTAL TOXICOLOGY 2022; 37:1071-1080. [PMID: 35060675 DOI: 10.1002/tox.23465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Cooking oil fumes (COFs) are the main pollutants in kitchen and indoor air, which threaten human health. Exposure to COFs may lead to respiratory diseases and impair pulmonary function. To investigate the toxicity of COFs on human bronchial epithelial cells (Beas-2B) and explore the underlying mechanisms, MTT assay was conducted to detect the viability of Beas-2B. Intracellular reactive oxygen species (ROS) levels and nitric oxide (NO) levels were determined with DCFH-DA assay and DAF-FM assay. The expression of genes involved in inflammation were measured with quantitative real-time PCR (qRT-PCR). The phosphorylation and the expression of proteins related to Mitogen-activated protein kinase (MAPK), NF-κB signaling pathways were measured with western blot. Our results revealed that COFs decreased cell viability, increased the ROS levels and NO levels and induced apoptosis in Beas-2B cells. The results of qRT-PCR and western blot showed that the expression of NLRP3, p65, iNOS, IL-1β, and the factors related to oxidative stress and inflammation increased, NF-κB signaling pathway and MAPK signaling pathway were activated. This study provided some useful information to evaluate the toxicity of COFs and revealed the possible mechanism for the damage on respiratory system induced by COFs.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Mingyang Fu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jingyi Miao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yueling Sun
- School Hospital, Liaoning University, Shenyang, China
| | - Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang, China
| | - Chengying Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ruochen Bi
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Shuai Wang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
6
|
Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int J Mol Sci 2022; 23:ijms23094998. [PMID: 35563387 PMCID: PMC9103799 DOI: 10.3390/ijms23094998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic vascular disease is a cardiovascular continuum in which the main role is attributed to atherosclerosis, from its appearance to its associated complications. The increasing prevalence of cardiovascular risk factors, population ageing, and burden on both the economy and the healthcare system have led to the development of new diagnostic and therapeutic strategies in the field. The better understanding or discovery of new pathophysiological mechanisms and molecules modulating various signaling pathways involved in atherosclerosis have led to the development of potential new biomarkers, with key role in early, subclinical diagnosis. The evolution of technological processes in medicine has shifted the attention of researchers from the profiling of classical risk factors to the identification of new biomarkers such as midregional pro-adrenomedullin, midkine, stromelysin-2, pentraxin 3, inflammasomes, or endothelial cell-derived extracellular vesicles. These molecules are seen as future therapeutic targets associated with decreased morbidity and mortality through early diagnosis of atherosclerotic lesions and future research directions.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
| | - Delia Lidia Șalaru
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Correspondence:
| | - Cristina Prisacariu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Dragoș Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Radu Andy Sascău
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristian Stătescu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| |
Collapse
|
7
|
Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. J Inflamm Res 2022; 14:7143-7172. [PMID: 34992411 PMCID: PMC8711145 DOI: 10.2147/jir.s344730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an intricate biological response of body tissues to detrimental stimuli. Cardiovascular disease (CVD) is the leading cause of death worldwide, and inflammation is well documented to play a role in the development of CVD, especially atherosclerosis (AS). Emerging evidence suggests that activation of the NOD-like receptor (NLR) family and the pyridine-containing domain 3 (NLRP3) inflammasome is instrumental in inflammation and may result in AS. The NLRP3 inflammasome acts as a molecular platform that triggers the activation of caspase-1 and the cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D (GSDMD). The cleaved GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and the discharge of intracellular pro-inflammatory factors. Hence, the NLRP3 inflammasome is a promising target for anti-inflammatory therapy against AS. In this review, we systematically summarized the current understanding of the activation mechanism of NLRP3 inflammasome, and the pathological changes in AS involving NLRP3. We also discussed potential therapeutic strategies targeting NLRP3 inflammasome to combat AS.
Collapse
Affiliation(s)
- Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Santuan Xie
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
8
|
Wladis EJ, Adam AP. Immune signaling in rosacea. Ocul Surf 2021; 22:224-229. [PMID: 34481075 DOI: 10.1016/j.jtos.2021.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
Rosacea is a common chronic skin disease affecting mostly people aged 40 and above, with currently no cure. When it affects the eyelids and periocular skin, it leads to dry eye and potentially corneal damage. Research performed over the last decade shed light into the potential mechanisms leading to skin hypersensitivity and provided promising avenues for development of novel, rational therapeutics aimed at reducing the skin inflammatory state. In this review, we discuss the current knowledge on the mechanisms of rosacea in general and of periocular skin-affecting disease in particular, identify key questions that remain to be answered in future research, and offer a disease model that can explain the key characteristics of this disease, with particular emphasis on a potential positive feedback loop that could explain both the acute and chronic features of rosacea.
Collapse
Affiliation(s)
- Edward J Wladis
- Lions Eye Institute, Department of Ophthalmology, Albany Medical College, 1220 New Scotland Rd, Suite 302, Slingerlands, NY, 12159, United States.
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology and Department of Ophthalmology, Albany Medical College, United States
| |
Collapse
|
9
|
Ma Y, Long Y, Chen Y. Roles of Inflammasome in Cigarette Smoke-Related Diseases and Physiopathological Disorders: Mechanisms and Therapeutic Opportunities. Front Immunol 2021; 12:720049. [PMID: 34367189 PMCID: PMC8334727 DOI: 10.3389/fimmu.2021.720049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cigarette smoke damages a wide range of immunological functions, including innate and adaptive immune responses. Emerging literature demonstrates that inflammasome constitutes an essential component in innate immune response. In this review, we focus on the cumulative mechanisms of inflammasome in cigarette smoke-related diseases and physiopathological disorders, and summarize potential therapeutic opportunities targeting inflammasome. This review suggests that inflammasomes (NLRP3, NLRP6, NLRP12 and AIM2) are involved in the pathogenesis of several cigarette smoke-related diseases (including COPD, ALI, atherosclerosis, kidney injury, bladder dysfunction, and oral leukoplakia) and physiopathological disorders (macrophage dysfunction, endothelial barrier dysfunction, podocyte injury, and ubiquitin-mediated proteasomal processing). MyD88/NF-κB, HMGB1, production of ROS, endoplasmic reticulum stress and mitochondrial dysfunction, and Ca2+ influx are potentially involved in cigarette smoke induced-inflammasome activation. Strategies targeting ROS/NLRP3 inflammasome axis are most widely investigated and show potential therapeutic effects.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjiao Long
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|