1
|
永 胜, 郭 玉, 陈 晓, 许 玉, 胡 英. [Mechanism of IL-17 Signaling Pathway in Spleen Inflammatory Response Induced by Altitude Hypoxia in Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:118-124. [PMID: 38322537 PMCID: PMC10839503 DOI: 10.12182/20240160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the mechanism of spleen tissue inflammatory response induced by altitude hypoxia in mice. Methods C57BL/6 mice were randomly assigned to a plain, i.e., low-altitude, normoxia group and an altitude hypoxia group, with 5 mice in each group. In the plain normoxia group, the mice were kept in a normoxic environment at the altitude of 400 m above sea level (with an oxygen concentration of 19.88%). The mice in the altitude hypoxia group were kept in an environment at the altitude of 4200 m above sea level (with an oxygen concentration of 14.23%) to establish the animal model of altitude hypoxia. On day 30, spleen tissues were collected to determine the splenic index. HE staining was performed to observe the histopathological changes in the spleen tissues of the mice. Real time fluorogenic quantitative PCR (RT-qPCR) and Western blot were conducted to determine the mRNA and protein expressions of interleukin (IL)-6, IL-12, and IL-1β in the spleen tissue of the mice. High-throughput transcriptome sequencing was performed with RNA sequencing (RNA-seq). KEGG enrichment analysis was performed for the differentially expressed genes (DEGs). The DEGs in the key pathways were verified by RT-qPCR. Results Compared with the plain normoxia group, the mice exposed to high-altitude hypoxic environment had decreased spleen index (P<0.05) and exhibited such pathological changes as decreased white pulp, enlarged germinal center, blurred edge, and venous congestion. The mRNA and protein expression levels of IL-6, IL-12, and IL-1β in the spleen tissue of mice in the altitude hypoxia group were up-regulated (P<0.05). According to the results of transcriptome sequencing and KEGG pathway enrichment analysis, 4218 DEGs were enriched in 178 enrichment pathways (P<0.05). DEGs were significantly enriched in multiple pathways associated with immunity and inflammation, such as T cell receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway (P<0.05) in the spleen of mice exposed to high-altitude hypoxic environment. Among them, IL-17 signaling pathway and the downstream inflammatory factors were highly up-regulated (P<0.05). Compared with the plain normoxia group, the mRNA expression levels of key genes in the IL-17 signaling pathway, including IL-17, IL-17R, and mitogen-activated protein kinase genes (MAPKs), and the downstream inflammatory factors, including matrix metallopeptidase 9 (MMP9), S100 calcium binding protein A8 gene (S100A8), S100 calcium binding protein A9 gene (S100A9), and tumor necrosis factor α (TNF-α), were up-regulated or down-regulated (P<0.05) in the altitude hypoxia group. According to the validation of RT-qPCR results, the mRNA expression levels of DEGs were consistent with the RNA-seq results. Conclusion Altitude hypoxia can induce inflammatory response in the mouse spleen tissue by activating IL-17 signaling pathway and promoting the release of downstream inflammatory factors.
Collapse
Affiliation(s)
- 胜 永
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉静 郭
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 晓晨 陈
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉珍 许
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 英 胡
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| |
Collapse
|
2
|
Saviano A, Manosour AA, Raucci F, Merlino F, Marigliano N, Schettino A, Wahid M, Begum J, Filer A, Manning JE, Casillo GM, Piccolo M, Ferraro MG, Marzano S, Russomanno P, Bellavita R, Irace C, Amato J, Alfaifi M, Rimmer P, Iqbal T, Pieretti S, Vellecco V, Caso F, Costa L, Giacomelli R, Scarpa R, Cirino G, Bucci M, McGettrick HM, Grieco P, Iqbal AJ, Maione F. New biologic (Ab-IPL-IL-17) for IL-17-mediated diseases: identification of the bioactive sequence (nIL-17) for IL-17A/F function. Ann Rheum Dis 2023; 82:1415-1428. [PMID: 37580108 PMCID: PMC10579190 DOI: 10.1136/ard-2023-224479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.
Collapse
Affiliation(s)
- Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Adel Abo Manosour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Peter Rimmer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefano Pieretti
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | | | - Francesco Caso
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Luisa Costa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Roberto Giacomelli
- Fondazione Policlinico Universitario, and Research Unit of Immuno-Rheumatology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Roma, Italy, and Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy, Roma, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Asif Jilani Iqbal
- Department of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
3
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
5
|
Rahmawati SF, te Velde M, Kerstjens HAM, Dömling ASS, Groves MR, Gosens R. Pharmacological Rationale for Targeting IL-17 in Asthma. FRONTIERS IN ALLERGY 2021; 2:694514. [PMID: 35387016 PMCID: PMC8974835 DOI: 10.3389/falgy.2021.694514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Asthma is a respiratory disease that currently affects around 300 million people worldwide and is defined by coughing, shortness of breath, wheezing, mucus overproduction, chest tightness, and expiratory airflow limitation. Increased levels of interleukin 17 (IL-17) have been observed in sputum, nasal and bronchial biopsies, and serum of patients with asthma compared to healthy controls. Patients with higher levels of IL-17 have a more severe asthma phenotype. Biologics are available for T helper 2 (Th2)-high asthmatics, but the Th17-high subpopulation has a relatively low response to these treatments, rendering it a rather severe asthma phenotype to treat. Several experimental models suggest that targeting the IL-17 pathway may be beneficial in asthma. Moreover, as increased activation of the Th17/IL-17 axis is correlated with reduced inhaled corticosteroids (ICS) sensitivity, targeting the IL-17 pathway might reverse ICS unresponsiveness. In this review, we present and discuss the current knowledge on the role of IL-17 in asthma and its interaction with the Th2 pathway, focusing on the rationale for therapeutic targeting of the IL-17 pathway.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Maurice te Velde
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Huib A. M. Kerstjens
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- Department of Pulmonary Medicine, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | | | | | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- *Correspondence: Reinoud Gosens
| |
Collapse
|