1
|
Vidal-Correoso D, Mateo SV, Muñoz-Morales AM, Lucas-Ruiz F, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, Sánchez-Redondo S, Santos V, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Peinado H, Baroja-Mazo A. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024; 108:e301-e312. [PMID: 38578699 DOI: 10.1097/tp.0000000000005008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Liver transplantation (LT) is crucial for end-stage liver disease patients, but organ shortages persist. Donation after circulatory death (DCD) aims to broaden the donor pool but presents challenges. Complications like acute rejection, hepatic artery thrombosis, and biliary issues still impact posttransplant prognosis. Biomarkers, including extracellular vesicles (EVs) and microRNAs (miRNAs), show promise in understanding and monitoring posttransplant events. This study explores the role of EVs and their miRNA cargo in LT, including their potential as diagnostic tools. METHODS EVs from intrahepatic end-ischemic organ preservation solution (eiOPS) in 79 donated livers were detected using different techniques (nanosight tracking analysis, transmission electron microscopy, and flow cytometry). EV-derived miRNAs were identified by quantitative real time-polymerase chain reaction. Bioinformatics analysis was performed using the R platform. RESULTS Different-sized and origin-specific EVs were found in eiOPS, with significantly higher concentrations in DCD compared with donation after brain death organs. Additionally, several EV-associated miRNAs, including let-7d-5p , miR-28-5p , miR-200a-3p , miR-200b-3p , miR-200c-3p , and miR-429 , were overexpressed in DCD-derived eiOPS. These miRNAs also exhibited differential expression patterns in liver tissue biopsies. Pathway analysis revealed enrichment in signaling pathways involved in extracellular matrix organization and various cellular processes. Moreover, specific EVs and miRNAs correlated with clinical outcomes, including survival and early allograft dysfunction. A predictive model combining biomarkers and clinical variables showed promise in acute rejection detection after LT. CONCLUSIONS These findings provide new insights into the use of EVs and miRNAs as biomarkers and their possible influence on posttransplantation outcomes, potentially contributing to improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Antonio Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
2
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Xie N, Ma R, Wang L, Shu Y, He P, Zhou Y, Xiang Y, Wang Y. Cannabidiol regulates the activation of hepatic stellate cells by modulating the NOX4 and NF-κB pathways. Food Chem Toxicol 2024; 186:114517. [PMID: 38382869 DOI: 10.1016/j.fct.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Cannabidiol (CBD) is an extract of natural cannabinoids that has therapeutic implications for a variety of ailments, such as neurological diseases, cardiomyopathy, and diabetes, due to its strong anti-inflammatory and oxidative stress properties. Our purpose was to reveal the possible underlying mechanisms and effect of CBD on the glucose oxidase (GO)-induced activation of HSC-T6 and LX-2 cells. The results showed that CBD effectively inhibited the proliferation and activation of HSC-T6 and LX-2 cells, and reduced the production of profibrotic factors to different degrees. CBD disrupted the NOX4 signalling pathway in activated HSC-T6 and LX-2 cells, reduced ROS and MDA levels, and increased SOD and GSH levels, thereby stabilizing the oxidative imbalance. CBD significantly inhibited the phosphorylation and degradation of NF-κB and IκBα, and decreased the release of TNF-α, IL-1β and IL-6. Moreover, CBD and an NF-κB-specific inhibitor (CAPE) effectively inhibited the expression of α-SMA, COL I, TNF-α and IL-1β to promote collagen metabolism and inhibit the inflammatory response. Overall, CBD inhibited HSCs activation through a and the mechanism involving the inhibition of NOX4 and NF-κB-dependent ROS regulation, thereby reducing inflammation and ameliorating oxidative imbalances.
Collapse
Affiliation(s)
- Na Xie
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China; Xindu District People's Hospital, Department of Medical Laboratory, Chengdu, Sichuan, China
| | - Run Ma
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lian Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yuanhui Shu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ping He
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yan Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yining Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yuping Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
4
|
Ng D, Altamirano-Vallejo JC, Navarro-Partida J, Sanchez-Aguilar OE, Inzunza A, Valdez-Garcia JE, Gonzalez-de-la-Rosa A, Bustamante-Arias A, Armendariz-Borunda J, Santos A. Enhancing Ocular Surface in Dry Eye Disease Patients: A Clinical Evaluation of a Topical Formulation Containing Sesquiterpene Lactone Helenalin. Pharmaceuticals (Basel) 2024; 17:175. [PMID: 38399390 PMCID: PMC10892869 DOI: 10.3390/ph17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this work was to assess the tolerability, safety, and efficacy of an ophthalmic topical formulation containing helenalin from Arnica montana and hyaluronic acid 0.4% (HA) in patients with mild-to-moderate Dry Eye Disease (DED) exhibiting positive Matrix Metalloproteinase 9 (MMP-9) test results. Tolerability and safety were evaluated in 24 healthy subjects. Participants were instructed to apply one drop of the formulation three times a day in the study eye, for 2 weeks, followed by a clinical follow-up of 21 days. Efficacy was studied in 48 DED patients randomized into Study (Group 1/receiving the studied formulation) or Control (Group 2/Receiving HA 0.4% eye lubricant) groups for 1 month. Assessments included an MMP-9 positivity test, conjunctival impression cytology (CIC), Ocular Surface Disease Index (OSDI), non-invasive film tear breakup time (NIBUT), non-invasive average breakup time (NIAvg-BUT), ocular surface staining, Schirmer's test, and meibomiography. A crossover design with an additional 1-month follow-up was applied to both groups. Healthy subjects receiving the studied formulation exhibited good tolerability and no adverse events. Regarding the efficacy study, Group 1 exhibited a statistically significant reduction in the MMP-9 positivity rate compared to Group 2 (p < 0.001). Both Group 1 and Group 2 exhibited substantial improvements in OSDI and NIBUT scores (p < 0.001). However, Group 1 demonstrated a significant improvement in NI-Avg-BUT and Schirmer's test scores (p < 0.001), whereas Group 2 did not (p > 0.05). Finally, after the crossover, the proportion of MMP-9-positive subjects in Group 1 increased from 25% to 91.6%, while Group 2 showed a significant decrease from 87.5% to 20.8%. Overall, the topical formulation containing sesquiterpene helenalin from Arnica montana and hyaluronic acid was well tolerated and exhibited a favorable safety profile. Our formulation reduces DED symptomatology and modulates the ocular surface inflammatory process; this is evidenced by the enhancement of CIC, the improvement of DED-related tear film status, and the reduction of the MMP-9 positivity rate.
Collapse
Affiliation(s)
- Dalia Ng
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Grupo Oftalmologico Acosta, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Juan Carlos Altamirano-Vallejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Andres Inzunza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Jorge Eugenio Valdez-Garcia
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Alejandro Gonzalez-de-la-Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
5
|
Du Y, Zhu S, Zeng H, Wang Z, Huang Y, Zhou Y, Zhang W, Zhu J, Yang C. Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis. Curr Stem Cell Res Ther 2024; 19:785-797. [PMID: 37102476 DOI: 10.2174/1574888x18666230427112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023]
Abstract
Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.
Collapse
Grants
- 2021A1515011580, 2021B1515140012, 2023A1515010083, 2022A1515011696 Natural Science Foundation of Guangdong Province
- 20211800905342, 20221800905572 Dongguan Science and Technology of Social Development Program
- 20211216 Administration of Traditional Chinese Medicine of Guangdong Province
- A2020096, B2021330 Medical Scientific Research Foundation of Guangdong Province
- k202005 Research and Development Fund of Dongguan People's Hospital
- pdjh2021b0224 Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Climbing Program Special Funds)
- 2020ZZDS002, 2020ZYDS005, 2021ZZDS006, 2021ZCDS003, ZYDS003 Guangdong Medical University Students' Innovation Experiment Program
- GDMU2020010, GDMU2020078, GDMU2021003, GDMU2021049 Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- 202110571010, S202110571078, 202210571008, S202210571075 Provincial and National College Students' Innovation and Entrepreneurship Training Program
- 4SG23033G Guangdong Medical University-Southern Medical University Twinning Research Team Project
- GDMUZ2020009 Scientific Research Fund of Guangdong Medical University
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Silin Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Haojie Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Weichui Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523716, China
| |
Collapse
|
6
|
Liu M, Cho WC, Flynn RJ, Jin X, Song H, Zheng Y. microRNAs in parasite-induced liver fibrosis: from mechanisms to diagnostics and therapeutics. Trends Parasitol 2023; 39:859-872. [PMID: 37516634 DOI: 10.1016/j.pt.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Chronic parasite infections in the liver pose a global threat to human and animal health, often occurring with liver fibrosis that leads to cirrhosis, liver failure, and even cancer. Hepatic fibrogenesis is a complex yet reversible process of tissue repair and is associated with various factors, including immune cells, microenvironment, gut microbiome, and interactions of the different liver cells. As a profibrogenic or antifibrogenic driver, microRNAs (miRNAs) are closely involved in parasite-induced hepatic fibrosis. This article updates the current understanding of the roles of miRNAs in hepatic fibrogenesis by parasite infections and discusses the strategies using miRNAs as candidates for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Robin J Flynn
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, X91 K0EK, Ireland
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Baek JY, Kim BH, Kim DW, Lee WY, Kim CE, Kim HY, Pyo J, Park ES, Kang KS. Hair Growth Effect of DN106212 in C57BL/6 Mouse and Its Network Pharmacological Mechanism of Action. Curr Issues Mol Biol 2023; 45:5071-5083. [PMID: 37367071 DOI: 10.3390/cimb45060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Centipeda minima (CMX) has been widely investigated using network pharmacology and clinical studies for its effects on hair growth via the JAK/STAT signaling pathway. Human hair follicle papilla cells exhibit hair regrowth through the expression of Wnt signaling-related proteins. However, the mechanism of action of CMX in animals has not been elucidated fully. This study examined the effect of induced hair loss and its side-effects on the skin, and observed the mechanism of action of an alcoholic extract of CMX (DN106212) on C57BL/6 mice. Our results showed that DN106212 was more effective in promoting hair growth than dimethyl sulfoxide in the negative control and tofacitinib (TF) in the positive control when mice were treated with DN106212 for 16 days. We confirmed that DN106212 promotes the formation of mature hair follicles through hematoxylin and eosin staining. We also found that the expression of vascular endothelial growth factor (Vegfa), insulin-like growth factor 1 (Igf1), and transforming growth factor beta 1 (Tgfb1) is related to hair growth using PCR. DN106212-treated mice had significantly higher expression of Vegfa and Igf1 than TF-treated ones, and inhibiting the expression of Tgfb1 had similar effects as TF treatment. In conclusion, we propose that DN106212 increases the expression of hair growth factors, promotes the development of hair follicles, and promotes hair growth. Although additional experiments are needed, DN106212 may serve as an experimental basis for research on natural hair growth-promoting agents.
Collapse
Affiliation(s)
- Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Byoung Ha Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Won-Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chang Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyun-Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol 2022; 13:1033003. [PMID: 36408214 PMCID: PMC9666775 DOI: 10.3389/fphar.2022.1033003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: Michael receptor molecules derived from plants are biologically active due to electrophilic groups in their structure. They can target nucleophilic residues on disease-related proteins, with significant therapeutic effects and low toxicity for many diseases. They provide a good option for relevant disease treatment. The aim of this study is to summarize the existing MAMs and their applications, and lay a foundation for the application of Michael receptor molecules in life science in the future. Methods: This review summarizes the published studies on Michael receptor molecules isolated from plants in literature databases such as CNKI, Wanfang Data, PubMed, Web of Science, ScienceDirect, and Wiley. Latin names of plants were verified through https://www.iplant.cn/. All relevant compound structures were verified through PubChem and literature, and illustrated with ChemDraw 20.0. Result: A total of 50 Michael receptor molecules derived from various plants were discussed. It was found that these compounds have similar pharmacological potential, most of them play a role through the Keap1-Nrf2-ARE pathway and the NF-κB pathway, and have biological activities such as antioxidant and anti-inflammatory. They can be used to treat inflammatory diseases and tumors. Conclusion: The Michael receptor molecule has electrophilicity due to its unsaturated aldehyde ketone structure, which can combine with nucleophilic residues on the protein to form complexes and activate or inhibit the protein pathway to play a physiological role. Michael receptor molecules can regulate the Keap1-Nrf2-ARE pathway and the NF-κB pathway. Michael receptor molecules can be used to treat diseases such as inflammation, cancer, oxidative stress, etc.
Collapse
Affiliation(s)
- Song-Ting Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Rui-Xin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gui-Hua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Lei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Selvakumar SC, Auxzilia Preethi K, Veeraiyan DN, Sekar D. The role of microRNAs on the pathogenesis, diagnosis and management of portal hypertension in patients with chronic liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:941-951. [PMID: 36315408 DOI: 10.1080/17474124.2022.2142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Portal hypertension (PH) is the elevated pressure in the portal vein, which results in poor functioning of the liver and is influenced by various factors like liver cirrhosis, nonalcoholic fatty liver disease, schistosomiasis, thrombosis, and angiogenesis. Though the diagnosis and treatment have been advanced, early diagnosis of the disease remains a challenge, and the diagnosis methods are often invasive. Hence, the clear understanding of the molecular mechanisms of PH can give rise to the development of novel biomarkers which can pave way for early diagnosis in noninvasive methods, and also the identification of target genes can elucidate an efficient therapeutic target. AREAS COVERED PubMed and Embase database was used to search articles with search terms 'Portal Hypertension' or 'pathophysiology' and 'diagnosis' and 'treatment' or "role of miRNAs in portal hypertension. EXPERT OPINION Interestingly, biomarkers like microRNAs (miRNAs) have been studied for their potential role in various diseases including hypertension. In recent years, miRNAs have been proved to be an efficient biomarker and therapeutic target and few studies have assessed the roles of miRNAs in PH. The present paper highlights the potential roles of miRNAs in PH.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deepak Nallaswamy Veeraiyan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
11
|
Yu S, Long Y, Li D, Shi A, Deng J, Ma Y, Wen J, Li X, Zhang Y, Liu S, Wan J, Li N, Guo J. Natural essential oils efficacious in internal organs fibrosis treatment: mechanisms of action and application perspectives. Pharmacol Res 2022; 182:106339. [DOI: 10.1016/j.phrs.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
|
12
|
Network Pharmacology and In Vivo Analysis of Dahuang-Huangqi Decoction Effectiveness in Alleviating Renal Interstitial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4194827. [PMID: 35774743 PMCID: PMC9239803 DOI: 10.1155/2022/4194827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Dahuang and Huangqi are the most frequently prescribed treatment methods for chronic kidney disease in China. Our study aimed to clarify the pharmacological mechanism of action of Dahuang-Huangqi decoction (DHHQD) in renal interstitial fibrosis (RIF). The intersection of genes targeted by DHHQD active ingredients and RIF target genes was searched using network pharmacology to build a chemical ingredient and disease target network. For in vivo analysis, Sprague–Dawley rats with unilateral urethral obstruction (UUO) were administered DHHQD, and their kidney function-related indicators and pathological indices were determined. The expression of core targets was quantified using real-time polymerase chain reaction and western blotting. A total of 139 common targets for DHHQD and RIF in chronic kidney disease were detected. Compared with the untreated UUO rats, the DHHQD-treated rats showed reductions in the following: blood urea nitrogen and serum creatinine levels, kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia and abnormal deposition of extracellular matrix, and microstructural changes in the mesangial matrix and glomerular basement membrane. DHHQD treatment significantly regulated the levels of renal core proteins, such as eNOS, IL-6, EGFR, and VEGF and reduced the mRNA and protein expression of the core targets involved in inflammation pathways, such as PI3K/AKT and TLR4/NF-κB. DHHQD treatment ameliorated the severity of RIF by potentially regulating the AKT/PI3K and TLR4/NF-κB signaling pathways. Our study findings provide insights into the mechanisms associated with DHHQD action and essential data for future research.
Collapse
|
13
|
Comprehensive analysis of transcriptomics and metabolomics to illustrate the underlying mechanism of helenalin against hepatic fibrosis. Eur J Pharmacol 2022; 919:174770. [PMID: 35120860 DOI: 10.1016/j.ejphar.2022.174770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the protective mechanisms of helenalin on hepatic fibrosis. In brief, rats were intragastrically administrated with 50% CCl4 for 9 weeks to induce liver fibrosis, followed by treatment with various agents for 6 weeks. The effects of helenalin on hepatic injury were assessed by pathological examinations. The potential targets were predicted by the "Drug-Disease" bioinformatic analysis and then verified by multiple experiments. Moreover, the underlying mechanism was investigated by transcriptomics and metabolomics as a whole. The results showed that helenalin significantly alleviated hepatocyte necrosis and hepatic injury, as proved by the pathological examinations. Also, helenalin markedly attenuated hepatocyte apoptosis by regulating the expression of caspase-3 and Bcl-2 families. Besides, helenalin could significantly reduce collagen accumulation, as evidenced by the decreased contents of collagen, hyaluronic acid and laminin. Moreover, helenalin significantly down-regulated the phosphorylation of PI3K, Akt, FAK, mTOR and P70S6K, and PTEN protein expression, suggesting that helenalin inhibited the PI3K/Akt signaling cascade. Meanwhile, helenalin inhibited the NF-κB signaling pathway by reducing the phosphorylation of IκBα, NF-κB p65 and IKKα/β, alleviating inflammation response. Interestingly, the analysis of transcriptomics and metabolomics indicated that helenalin inhibited the glycerophospholipid metabolism pathway by down-regulating the target genes (CHKA, ETNPPL, LYPLA1, PCYT2, PLD4 and PNPLA6), ultimately ameliorating hepatocyte damage. In conclusion, helenalin ameliorates hepatic fibrosis by regulating the PI3K/Akt and NF-κB signaling pathways and the glycerophospholipid metabolism pathway.
Collapse
|
14
|
Mun H, Townley HE. Mechanism of Action of the Sesquiterpene Compound Helenalin in Rhabdomyosarcoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14121258. [PMID: 34959659 PMCID: PMC8703838 DOI: 10.3390/ph14121258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in paediatric patients. Relapsed or refractory RMS shows very low 5-year survival rates, which urgently necessitates new chemotherapy agents. Herein, the sesquiterpene lactone, helenalin, was investigated as a new potential therapeutic agent against the embryonal RMS (eRMS) and alveolar RMS (aRMS) cells. We have evaluated in vitro antiproliferative efficacy of helenalin on RMS cells by the MTT and wound healing assay, and estimated several cell death pathways by flow cytometry, confocal microscopy and immunoblotting. It was shown that helenalin was able to increase reactive oxygen species levels, decrease mitochondrial membrane potential, trigger endoplasmic reticulum stress and deactivate the NF-κB pathway. Confirmation was obtained through the use of antagonistic compounds which alleviated the effects of helenalin in the corresponding pathways. Our findings demonstrate that oxidative stress is the pivotal mechanism of action of helenalin in promoting RMS cell death in vitro.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Helen Elizabeth Townley
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-01865283792
| |
Collapse
|