1
|
Shi B, Qu A, Li Z, Xiong Y, Ji J, Xu L, Xu C, Sun M, Kuang H. Chiral Intranasal Nanovaccines as Antivirals for Respiratory Syncytial Virus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408090. [PMID: 39221522 DOI: 10.1002/adma.202408090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to develop an intranasal nanovaccine by combining chiral nanoparticles with the RSV pre-fusion protein (RSV protein) to create L-nanovaccine (L-Vac). The results showed that L-NPs increased antigen attachment in the nasal cavity by 3.83 times and prolonged its retention time to 72 h. In vivo experimental data demonstrated that the intranasal immunization with L-Vac induced a 4.86-fold increase in secretory immunoglobulin A (sIgA) secretion in the upper respiratory tract, a 1.85-fold increase in the lower respiratory tract, and a 20.61-fold increase in RSV-specific immunoglobin G (IgG) titer levels in serum, compared with the commercial Alum Vac, while the neutralizing activity against the RSV authentic virus is 1.66-fold higher. The mechanistic investigation revealed that L-Vac activated the tumor necrosis factor (TNF) signaling pathway in nasal epithelial cells (NECs), in turn increasing the expression levels of interleukin-6 (IL-6) and C-C motif chemokine ligand 20 (CCL20) by 1.67-fold and 3.46-fold, respectively, through the downstream nuclear factor kappa-B (NF-κB) signaling pathway. Meanwhile, CCL20 recruited dendritic cells (DCs) and L-Vac activated the Toll-like receptor signaling pathway in DCs, promoting IL-6 expression and DCs maturation, and boosted sIgA production and T-cell responses. The findings suggested that L- Vac may serve as a candidate for the development of intranasal medicine against various types of respiratory infections.
Collapse
Affiliation(s)
- Baimei Shi
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yingcai Xiong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, P. R. China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
2
|
Tada R, Ito H, Nagai Y, Sakurai Y, Yamanaka D, Ohno N, Kunisawa J, Adachi Y, Negishi Y. Addition of Mucoadhesive Agent to Enzymatically Polymerized Caffeic Acid-Based Nasal Vaccine Formulation Attenuates Antigen-Specific Antibody Responses in Mice. Int J Med Mushrooms 2024; 26:1-8. [PMID: 39171627 DOI: 10.1615/intjmedmushrooms.2024054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mucosal vaccination is a promising strategy for combating infectious diseases caused by pathogenic microbes, as it can generate antigen-specific immune responses in both systemic and mucosal compartments. In our recent study, we developed a nasal vaccine system for Streptococcus pneumoniae infections in mice using enzymatically polymerized polyphenols such as caffeic acid. However, the efficacy of this mucosal vaccine system is approximately 70%, indicating a need for improvement. To address this issue, we hypothesized that incorporating a mucoadhesive agent that enhances mucosal absorption into a polyphenol-based mucosal vaccine system would improve vaccine efficacy. Contrary to our expectations, we found that adding a mucoadhesive agent, hydrophobically modified hydroxypropylmethylcellulose, to the vaccine system reduced the stimulation of antigen-specific antibody responses in both the mucosal (more than 90% reduction; P < 0.05) and systemic compartments (more than 80% reduction; P < 0.05). Although the addition of the mucoadhesive agent may have interfered with the interaction between the mucosal epithelium and the vaccine system, the underlying mechanism remains unclear, and further research is needed to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Rui Tada
- Tokyo University of Pharmacy and Life Sciences
| | - Hiroki Ito
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yasuhiro Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
3
|
Angulo M, Guerra K, Arevalo P, Trujillo E, Monreal-Escalante E, Angulo C. Probiotic Potential of Bacillus sp. 62A Isolated from a Marine Extreme Environment. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10182-3. [PMID: 37889453 DOI: 10.1007/s12602-023-10182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Antimicrobial resistance is an important health concern globally, and probiotics are considered an alternative to minimize it. The present study examined the in vitro probiotic characteristics and in vivo immunomodulatory potential of Bacillus sp. 62A - an extremophile bacterium. Bacillus sp. 62A was evaluated in vitro for its cytotoxicity, hemolytic activity, antibiotic susceptibility, and resistance to gastrointestinal conditions (bile salts, low pH, and intestinal adherence). Additionally, the immunomodulatory effect of Bacillus sp. 62A was studied in mice. The animals were supplemented daily with phosphate-buffered saline (control) and Bacillus sp. 62A at 1 × 108 colony forming units (CFU). Samples were taken on days 5 and 10. Isolated splenocytes were challenged with Escherichia coli for immunological analyses and immune-related gene expression. Serum and feces were collected for IgA and IgG determination. Bacillus sp. 62A did not show cytotoxicity, hemolytic activity, or resistance to antibiotics. Furthermore, the bacterium has autoaggregation and intestinal adhesion capacities and grows in the presence of bile salts and low pH. Bacillus supplementation in mice improved respiratory burst activity, nitric oxide production, and IL-1β and IL-6 gene expressions, mainly at 10 days. After E. coli challenge, Bacillus supplementation in mice induced an anti-inflammatory response through a decrease in immunological parameters and an increase in IL-10 gene expression. Moreover, serum IgA and IgG and fecal IgG augmented in supplemented mice. In conclusion, Bacillus sp. 62A has biosafe and immunomodulatory probiotic potential.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Kevyn Guerra
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
- Tecnológico Nacional de México / Instituto Tecnológico de La Paz, Boulevard Forjadores 4720, 8 de Octubre Segunda sección, C.P. 23080, La Paz, Mexico
| | - Paola Arevalo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico
- Investigadora Por México-CONACYT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.S. 23096, La Paz, Mexico.
| |
Collapse
|
4
|
LI Z, WAN Y, XU L, ZHANG W, ZHANG Y, LIAO P. Clinical and laboratory features in health care volunteers with inactivated SARS-CoV-2 vaccination. Turk J Med Sci 2023; 53:1185-1193. [PMID: 38813035 PMCID: PMC10763784 DOI: 10.55730/1300-0144.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/26/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim To better optimize the inactivated vaccine-induced immune response and improve vaccine protection efficiency, a preliminary study was conducted on the influencing factors of producing neutralizing antibody (NAb) titers against the inactivated coronavirus disease 2019 (COVID-19) vaccine. Materials and methods A total of 91 health care volunteers were enrolled from the Immunology Division of the Laboratory Department of Chongqing General Hospital from February to March 2021. The study had a cross-sectional design. All of the volunteers were scheduled to receive a complete dose regimen of the inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine and the vaccination interval between 2 doses was 14 days. Clinical and laboratory features were collected for further analysis. Results The NAb titers gradually increased after COVID-19 vaccination, and 72.53% (n = 66) of the volunteers had NAbs after the second dose. Eight variables, including CD16+CD56+ NK cell level before the first dose (HR = 0.94, p = 0.02), CD16+CD56+ NK cell level after the second dose (HR = 0.94, p = 0.03), interleukin (IL)-2 level before the first dose (HR = 2.09, p = 0.05), mean corpuscular volume (HR = 0.86, p = 0.02), serum urea level (HR = 0.69, p = 0.05), increment of CD19+ B cells (HR = 0.86, p = 0.03), increment of CD4+/CD8+ T cells (HR = 0.21, p = 0.03), and increment of the IL-6 level (HR = 0.75, p = 0.04) demonstrated a correlation with the NAb titers after COVID-19 vaccination. In the multivariate logistical regression analysis, the serum urea level (HR = 2.32, P = 0.03) and increment of CD19+ B cells (HR = 1.96, p = 0.03) were positively correlated with the NAb titers. The principal component analysis effectively distinguished the response after COVID-19 vaccination. The Pearson correlation analysis indicated that the CD19+ B cell level (r = 0.23, p < 0.001) and IL-2 (r = 0.24, p < 0.001) and IL-6 levels (r = 0.22, p < 0.001) were weakly positively correlated with the concentration of NAbs. Conclusion The NAbs titers of the inactivated vaccines were positively correlated with the ratio of CD19+ B cell, IL-6, and IL-2 levels in the serum, which provide clinical guidance for inactivated SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Zhijie LI
- Chongqing Medical University, Chongqing,
China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing,
China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing,
China
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Yafang WAN
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Lanlan XU
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Wenjia ZHANG
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Yu ZHANG
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| | - Pu LIAO
- Chongqing Medical University, Chongqing,
China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing,
China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing,
China
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing,
China
| |
Collapse
|
5
|
Tada R, Yamazaki H, Nagai Y, Takeda Y, Ohshima A, Kunisawa J, Negishi Y. Intranasal administration of sodium nitroprusside augments antigen-specific mucosal and systemic antibody production in mice. Int Immunopharmacol 2023; 119:110262. [PMID: 37150015 PMCID: PMC10161703 DOI: 10.1016/j.intimp.2023.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1β, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruka Yamazaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukino Takeda
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
6
|
Cao YY, Li J, Chen Q, Qi YP, Xu QC, He JM, Wang Z, Lu WH. PLK1 protects intestinal barrier function in sepsis: A translational research. Cytokine 2023; 162:156113. [PMID: 36563524 DOI: 10.1016/j.cyto.2022.156113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sepsis and its related complications are very challenging in the intensive care unit, among which intestinal barrier injury is a general manifestation. Polo-like kinase 1 (PLK1) is widely studied in cancer, while its role in sepsis is poorly understood. In this study, the efficiency of PLK1 as a marker of intestinal barrier function as well as a predictor of mortality in sepsis was evaluated. METHODS The level of serum PLK1 was measured in septic patients (n = 51) and controls (n = 20); subsequently, its correlation with serum diamine oxidase (DAO), d-lactate, and endotoxin levels and its ability topredict mortality were analysed. The survival rate and barrier injury degree were also assessed in septic mice. RESULTS Serum PLK1 levels were elevated in septic patients, were negatively correlated with serum DAO, d-lactate, and endotoxin levels, and had a high predictive value for 28-day mortality in patients. The serum PLK1 level in non-survivors was lower. The expression of PLK1 in the intestine was decreased in septic mice, and overexpression or inhibition of PLK1 alleviated or aggravated intestinal barrier injury, respectively, as evaluated by Chiu's score, serum levels of DAO and d-lactate, and expression of tight junction proteins. Overexpressing PLK1 also decreased the 72-hour death rate of septic mice. Further study also revealed the negative correlation of PLK1 and IL-6 in patients, and increasing or interfering with PLK1 expression reduced or increased the serum IL-6 level in mice. CONCLUSIONS PLK1 plays a critical role in intestinal barrier function during sepsis, providing a novel perspective for sepsis therapy in the clinic.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| | - Juan Li
- Department of Nephrology, Wuhu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu 241000, Anhui, China.
| | - Qun Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| | - Yu-Peng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| | - Qian-Cheng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| | - Jia-Min He
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China.
| | - Wei-Hua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241001, Anhui, China.
| |
Collapse
|
7
|
Tada R, Honjo E, Muto S, Takayama N, Kiyono H, Kunisawa J, Negishi Y. Role of Interleukin-6 in the Antigen-Specific Mucosal Immunoglobulin A Responses Induced by CpG Oligodeoxynucleotide-Loaded Cationic Liposomes. MEMBRANES 2022; 12:membranes12060635. [PMID: 35736342 PMCID: PMC9228571 DOI: 10.3390/membranes12060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
An advantage of mucosal vaccines over conventional parenteral vaccines is that they can induce protective immune responses not only at mucosal surfaces but also in systemic compartments. Despite this advantage, few live attenuated or inactivated mucosal vaccines have been developed and applied clinically. We recently showed that the intranasal immunization of ovalbumin (OVA) with class B synthetic oligodeoxynucleotides (ODNs) containing immunostimulatory CpG motif (CpG ODN)-loaded cationic liposomes synergistically exerted both antigen-specific mucosal immunoglobulin A (IgA) and systemic immunoglobulin G (IgG) responses in mice. However, the mechanism underlying the mucosal adjuvant activity of CpG ODN-loaded liposomes remains unknown. In the present study, we showed that the intranasal administration of CpG ODN-loaded cationic liposomes elicited interleukin (IL)-6 release in nasal tissues. Additionally, pre-treatment with an anti-IL-6 receptor (IL-6R) antibody attenuated antigen-specific nasal IgA production but not serum IgG responses. Furthermore, the intranasal administration of OVA and CpG ODN-loaded cationic liposomes increased the number of IgA+/CD138+ plasma cells and IgA+/B220+ B cells in the nasal passages. This increase was markedly suppressed by pre-treatment with anti-IL-6R blocking antibody. In conclusion, IL-6 released by CpG ODN-loaded cationic liposomes at the site of administration may play a role in the induction of antigen-specific IgA responses by promoting differentiation into IgA+ plasma cells for IgA secretion from B cells.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (E.H.); (S.M.); nori-k0123_suns-@hotmail.co.jp (N.T.); (Y.N.)
- Correspondence: ; Tel.: +81-42-676-3219
| | - Emi Honjo
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (E.H.); (S.M.); nori-k0123_suns-@hotmail.co.jp (N.T.); (Y.N.)
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (E.H.); (S.M.); nori-k0123_suns-@hotmail.co.jp (N.T.); (Y.N.)
| | - Noriko Takayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (E.H.); (S.M.); nori-k0123_suns-@hotmail.co.jp (N.T.); (Y.N.)
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (H.K.); (J.K.)
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (H.K.); (J.K.)
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (E.H.); (S.M.); nori-k0123_suns-@hotmail.co.jp (N.T.); (Y.N.)
| |
Collapse
|