1
|
Huang SC, Huang HC, Liao WL, Kao ST, Cheng CY. Neuroprotective effects of Gastrodia elata Blume on promoting M2 microglial polarization by inhibiting JNK/TLR4/T3JAM/NF-κB signaling after transient ischemic stroke in rats. Front Pharmacol 2024; 15:1469602. [PMID: 39391701 PMCID: PMC11465390 DOI: 10.3389/fphar.2024.1469602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Gastrodia elata Blume, also called Tian Ma (TM), has been used to treat stroke for centuries. However, its effects on inflammation in acute cerebral ischemic injury and underlying mechanisms involved in microglial polarization remain unknown. The present study explored the effects of the TM extract on the modulation of microglial M1/M2 polarization 2 days after transient cerebral ischemia. Methods Male Sprague Dawley rats were intracerebroventricularly administered with 1% dimethyl sulfoxide 25 min before cerebral ischemia and subsequently intraperitoneally administered 0.25 g/kg (DO + TM-0.25 g), 0.5 g/kg (DO + TM-0.5 g), or 1 g/kg (DO + TM-1 g) of the TM extract after cerebral ischemia onset. Results DO + TM-0.5 g and DO + TM-1 g treatments downregulated the following: phospho-c-Jun N-terminal kinase (p-JNK)/JNK, tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), TRAF3-interacting JNK-activating modulator (T3JAM), p-nuclear factor-kappa B p65 (p-NF-κB p65)/NF-κB p65, ionized calcium-binding adapter molecule 1 (Iba1), CD86, TNF-α, interleukin (IL)-1β, and IL-6 expression and toll-like receptor 4 (TLR4)/Iba1, CD86/Iba1, and p-NF-κB p65/Iba1 coexpression. These treatments also upregulated IL-10, nerve growth factor, and vascular endothelial growth factor A expression and YM-1/2/Iba1 and IL-10/neuronal nuclei coexpression in the cortical ischemic rim. The JNK inhibitor SP600125 exerted similar treatment effects as the DO + TM-0.5 g and DO + TM-1 g treatments. Conclusion DO + TM-0.5 g and DO + TM-1 g/kg treatments attenuate cerebral infarction by inhibiting JNK-mediated signaling. TM likely exerts the neuroprotective effects of promoting M1 to M2 microglial polarization by inhibiting JNK/TLR4/T3JAM/NF-κB-mediated signaling in the cortical ischemic rim 2 days after transient cerebral ischemia.
Collapse
Affiliation(s)
- Shang-Chih Huang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51:247. [PMID: 38300425 DOI: 10.1007/s11033-023-09202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
A stroke is a complicated neurological illness that occurs when there is a disruption in the blood flow to the brain. This disruption results in the damage of neurons, which then leads to functional abnormalities. The Wnt signalling pathway, which is already well-known for its important function in development and tissue homeostasis, has recently been recognised as a critical factor in the pathophysiology of stroke. Recent studies have shown the Wnt pathway's roles in stroke-related events. The complex-interactions between the Wnt pathway and stroke emphasising the pathway's contributions to neuro-protection and synaptic plasticity. The Wnt pathway's influence on neuro-genesis and synaptic plasticity underscores its potential for driving stroke recovery and rehabilitation strategies. The current review discusses about the Wnt signalling pathway in brain pathophysiology and stroke with special emphasis on the various pathways involved in the positive and negative modulation of Wnt pathway namely Phosphoinositide 3-kinase (PI3-K), Glycogen synthase kinase-3β (GSK-3β), Mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
3
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
4
|
Zhu H, Zhang Y, Feng S, Li Y, Ye Y, Jian Z, Xiong X, Gu L. Trends in NLRP3 inflammasome research in ischemic stroke from 2011 to 2022: A bibliometric analysis. CNS Neurosci Ther 2023; 29:2940-2954. [PMID: 37088947 PMCID: PMC10493663 DOI: 10.1111/cns.14232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Ischemic stroke is a leading cause of permanent disability and death globally. The nucleotide-biding oligomaerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that plays a role in ischemic stroke. Recently, research on the role of NLRP3 in ischemic stroke has developed rapidly worldwide. However, there is no bibliometric analysis of NLRP3 in ischemic stroke to date. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on NLRP3 in the field of ischemic stroke research worldwide over the past 12 years and to identify important results, major research areas, and emerging trends. METHODS Publications related to NLRP3 in ischemic stroke from January 1, 2011 to December 31, 2022 were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSviewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. The Total Global Citation Score (TGCS) was employed to assess the impact of publications. RESULTS We found that research of NLRP3 in ischemic stroke developed rapidly starting in 2011. 601 relevant studies have been published in 245 journals over the past 12 years. Journal of Neuroinflammation and International Immunopharmacology were the most productive journals and Journal of Neuroinflammation was the most cited journal. Additionally, Stroke and Journal of Cerebral Blood Flow & Metabolism were the most co-cited journal. The most productive country was China (records = 430) and the most productive university was the Zhejiang University (records = 24). Arumugam TV (TGCS = 949) was the most cited author in this field. NLRP3 inflammasome activation, nf-κb, oxidative stress, and inflammation were the knowledge bases for the research in this field. CONCLUSION This study is a scientometric study utilizing quantitative and qualitative methods to comprehensively review the publications on NLRP3 in ischemic stroke. This information provides a reference for scholars to further study NLRP3 in ischemic stroke.
Collapse
Affiliation(s)
- Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
5
|
Luo J, Chen D, Mei Y, Li H, Qin B, Lin X, Chan TF, Lai KP, Kong D. Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke. J Biol Eng 2023; 17:50. [PMID: 37533068 PMCID: PMC10398984 DOI: 10.1186/s13036-023-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Ischemic stroke accounts for 70-80% of all stroke cases, leading to over two million people dying every year. Poor diagnosis and late detection are the major causes of the high death and disability rate. METHODS In the present study, we used the middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomic analysis, followed by a systematic advanced bioinformatic analysis, including gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA). We aimed to identify novel biomarkers for the early detection of ischemic stroke. In addition, we aimed to delineate the molecular mechanisms underlying the development of ischemic stroke, in which we hoped to identify novel therapeutic targets for treating ischemic stroke. RESULTS In the comparative transcriptomic analysis, we identified 2657 differentially expressed genes (DEGs) in the brain tissue of the MCAO model. The gene enrichment analysis highlighted the importance of these DEGs in oxygen regulation, neural functions, and inflammatory and immune responses. We identified the elevation of angiopoietin-2 and leptin receptor as potential novel biomarkers for early detection of ischemic stroke. Furthermore, the result of IPA suggested targeting the inflammasome pathway, integrin-linked kinase signaling pathway, and Th1 signaling pathway for treating ischemic stroke. CONCLUSION The results of the present study provide novel insight into the biomarkers and therapeutic targets as potential treatments of ischemic stroke.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| | - Dingzhi Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Hepeng Li
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Biyun Qin
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, P. R. China.
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
6
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
7
|
Zuo C, Cao H, Feng F, Li G, Huang Y, Zhu L, Gu Z, Yang Y, Chen J, Jiang Y, Wang F. Repetitive transcranial magnetic stimulation exerts anti-inflammatory effects via modulating glial activation in mice with chronic unpredictable mild stress-induced depression. Int Immunopharmacol 2022; 109:108788. [DOI: 10.1016/j.intimp.2022.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 12/21/2022]
|
8
|
Ai Y, Zhao Z, Wang H, Zhang X, Qin W, Guo Y, Zhao M, Tang J, Ma X, Zeng J. Pull the plug: Anti‐angiogenesis potential of natural products in gastrointestinal cancer therapy. Phytother Res 2022; 36:3371-3393. [PMID: 35871532 DOI: 10.1002/ptr.7492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanling Ai
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hengyi Wang
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Weihan Qin
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Yanlei Guo
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Maoyuan Zhao
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Department of Geriatrics Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|