1
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Chen Y, Huang Z, Ji C, Shi JH. Effect of human heart valve-derived ECM and NP/PCL electrospun nanofibrous sheet on mice bone marrow mononuclear cells and cardiac repair. Heliyon 2024; 10:e31821. [PMID: 38873676 PMCID: PMC11170193 DOI: 10.1016/j.heliyon.2024.e31821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Background Biomaterials can improve cardiac repair combined with transplantation of bone marrow mononuclear cells (BMMNCs). In this study, we compared the phenotype and cardiac repair between human heart valve-derived scaffold (hHVS) and natural protein/polycaprolactone (NP/PCL) anchored BMNNCs. Methods and results BMMNCs were obtained from mice five days following myocardial infarction. Subsequently, BMMNCs were separately cultured on hHVS and PCL. Proliferation and cardiomyogenic differentiation were detected in vitro. Cardiac function was measured after transplantation of cell-seeded cardiac patch on MI mice. After that, the BMMNCs were collected for mRNA sequencing after culturing on the scaffolds. Upon anchoring onto hHVS or PCL, BMMNCs exhibited an increased capacity for proliferation in vitro, however, the cells on hHVS exhibited superior cardiomyogenic differentiation ability. Moreover, both BMMNCs-seeded biomaterials effectively improved cardiac function after 4 weeks of transplantation, with reduced infarction area and restricted LV remodeling. Cell-seeded hHVS was superior to cell-seeded PCL. Conclusion BMMNCs on hHVS showed better capacity in both cell cardiac repairing and improvement for cardiac function than on PCL. Compared with seeded onto PCL, BMMNCs on hHVS had 253 genes up regulated and 189 genes down regulated. The reason for hHVS' better performance than PCL as a scaffold for BMMNCs might be due to the fact that optimized method of decellularization let more cytokines in ECM retained.
Collapse
Affiliation(s)
- Yao Chen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Medical Cosmetology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Nantong 226001, Jiangsu, China, Department of Cardiovascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Cheng Ji
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Nantong 226001, Jiangsu, China, Department of Cardiovascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Nantong 226001, Jiangsu, China, Department of Cardiovascular Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
3
|
Chen Z, Li Z, Xu R, Xie Y, Li D, Zhao Y. Design, Synthesis, and In Vivo Evaluation of Isosteviol Derivatives as New SIRT3 Activators with Highly Potent Cardioprotective Effects. J Med Chem 2024; 67:6749-6768. [PMID: 38572607 DOI: 10.1021/acs.jmedchem.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyin Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruilong Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yufeng Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Dehuai Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Hacker BC, Lin EJ, Herman DC, Questell AM, Martello SE, Hedges RJ, Walker AJ, Rafat M. Irradiated Mammary Spheroids Elucidate Mechanisms of Macrophage-Mediated Breast Cancer Recurrence. Cell Mol Bioeng 2023; 16:393-403. [PMID: 37810999 PMCID: PMC10550896 DOI: 10.1007/s12195-023-00775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/20/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction While most patients with triple negative breast cancer receive radiation therapy to improve outcomes, a significant subset of patients continue to experience recurrence. Macrophage infiltration into radiation-damaged sites has been shown to promote breast cancer recurrence in pre-clinical models. However, the mechanisms that drive recurrence are unknown. Here, we developed a novel spheroid model to evaluate macrophage-mediated tumor cell recruitment. Methods We characterized infiltrating macrophage phenotypes into irradiated mouse mammary tissue via flow cytometry. We then engineered a spheroid model of radiation damage with primary fibroblasts, macrophages, and 4T1 mouse mammary carcinoma cells using in vivo macrophage infiltration results to inform our model. We analyzed 4T1 infiltration into spheroids when co-cultured with biologically relevant ratios of pro-healing M2:pro-inflammatory M1 macrophages. Finally, we quantified interleukin 6 (IL-6) secretion associated with conditions favorable to tumor cell infiltration, and we directly evaluated the impact of IL-6 on tumor cell invasiveness in vitro and in vivo. Results In our in vivo model, we observed a significant increase in M2 macrophages in mouse mammary glands 10 days post-irradiation. We determined that tumor cell motility toward irradiated spheroids was enhanced in the presence of a 2:1 ratio of M2:M1 macrophages. We also measured a significant increase in IL-6 secretion after irradiation both in vivo and in our model. This secretion increased tumor cell invasiveness, and tumor cell invasion and recruitment were mitigated by neutralizing IL-6. Conclusions Our work suggests that interactions between infiltrating macrophages and damaged stromal cells facilitate breast cancer recurrence through IL-6 signaling. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00775-x.
Collapse
Affiliation(s)
- Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Erica J. Lin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Dana C. Herman
- Department of Biochemistry, Vanderbilt University, Nashville, TN USA
| | - Alyssa M. Questell
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Shannon E. Martello
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Rebecca J. Hedges
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Anesha J. Walker
- Department of Biology, Tennessee State University, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt University, Engineering and Science Building, Rm. 426, Nashville, TN 37212 USA
| |
Collapse
|
6
|
Patel R, Hall S, Lanford H, Ward N, Grespin RT, Figueroa M, Mattia V, Xiong Y, Mukherjee R, Jones J, Ruddy JM. Signaling through the IL-6-STAT3 Pathway Promotes Proteolytically-Active Macrophage Accumulation Necessary for Development of Small AAA. Vasc Endovascular Surg 2023; 57:433-444. [PMID: 36639147 PMCID: PMC10238619 DOI: 10.1177/15385744231152961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Elevated interleukin-6 (IL-6) plasma levels have been associated with abdominal aortic aneurysm (AAA), but whether this cytokine plays a causative role in the degenerative remodeling or represents an effect from the inflammatory cascades initiated by infiltrating leukocytes remained unclear. This project aims to demonstrate that within the aortic wall, signaling from IL-6 through the STAT3 transcription factor is necessary for infiltration of proteolytically-active macrophages and development of small AAA. METHODS Following measurement of baseline infrarenal aortic diameter (AoD, digital microscopy), C57Bl/6 and IL-6 knockout (IL-6KO) mice underwent AAA induction by application of peri-adventitial CaCl2 (0.5 M) +/- implantation of an osmotic mini-pump delivering IL-6 (4.36 µg/kg/day over 21 days). At the terminal procedure, AoDs were measured by digital microscopy and aortas harvested for immunoblot (pSTAT3/STAT3), matrix metalloproteinase (MMP) quantification, or flow cytometric analysis of macrophage content. Plasma was collected for cytokine analysis. RESULTS IL-6 infusion significantly increased the plasma IL-6 levels in C57Bl/6 and IL-6KO animals. The C57Bl/6 + CaCl2 group developed AAA (AoD >50% above baseline) but IL-6KO + CaCl2 did not. In the IL-6KO + IL-6+CaCl2 group, AAA developed to match that of C57Bl/6 + CaCl2 mice. STAT3 activity was significantly increased in animals with advanced stages of dilation (>40% from baseline), compared to those with ectasia (≤25%). Although cytokine profiles did not support T-cells or neutrophils as being active contributors in this stage of aortic remodeling, changes in the profile of elaborated MMPs suggested macrophage activity with a trend toward alternatively activated pathways. Flow cytometry confirmed significantly increased macrophage abundance specifically in animals with upregulated STAT3 activity and advanced aortic dilation. CONCLUSION In this murine model of AAA, progressive dilation to development of true AAA was only accomplished when IL-6 signaling upregulated STAT3 activity to effect accumulation of proteolytically-active macrophages. This pathway warrants further investigation to identify potential therapeutic avenues to abrogate growth of small AAA.
Collapse
Affiliation(s)
- Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nicholas Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - R. Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Li Y, Lu Y, Zhu Y, Yao J, Hua H, Shen J, Gao X, Qin K. Dynamic changes in marker components during the stir-frying of Pharbitidis Semen, and network analysis of its potential effects on nephritis. Front Pharmacol 2023; 14:1123476. [PMID: 36998608 PMCID: PMC10045986 DOI: 10.3389/fphar.2023.1123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Pharbitidis Semen (PS) has been widely used in traditional Chinese medicine to treat several diseases such as nephritis. PS is usually stir-fried to enhance its therapeutic efficacy before use in clinical practice. However, the changes in phenolic acids during stir-frying and the mechanisms of their therapeutic effects on nephritis are still unclear.Methods: Here, we studied the processing-induced chemical changes and elucidated the mechanism of PS in the treatment of nephritis. We determined the levels of the 7 phenolic acids in raw PS (RPS) and stir-fried PS (SPS) using high-performance liquid chromatography, analyzed the dynamic compositional changes during stir-frying, and used network analysis and molecular docking to predict and verify compound targets and pathways corresponding to nephritis.Results: The dynamic changes in the 7 phenolic acids in PS during stir-frying are suggestive of a transesterification reaction. Pathway analysis revealed that the targets of nephritis were mainly enriched in the AGE-RAGE, hypoxia-inducible factor-1, interleukin-17, and tumor necrosis factor signaling pathways among others. Molecular docking results showed that the 7 phenolic acids had good binding ability with the key nephritic targets.Discussion: The potential pharmaceutical basis, targets, and mechanisms of PS in treating nephritis were explored. Our findings provide a scientific basis for the clinical use of PS in treating nephritis.
Collapse
Affiliation(s)
- Yuman Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yuhe Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yujie Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jingchun Yao
- Lunan Pharmaceutical Group Limited by Share Ltd, Linyi, China
| | - Haibing Hua
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jinyang Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xun Gao, ; Kunming Qin,
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xun Gao, ; Kunming Qin,
| |
Collapse
|
8
|
Isosteviol attenuates DSS-induced colitis by maintaining intestinal barrier function through PDK1/AKT/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109532. [PMID: 36508925 DOI: 10.1016/j.intimp.2022.109532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic debilitating inflammatory disorders of the gastrointestinal tract that is characterized by intestinal epithelial barrier dysfunction and excessive activation of the mucosal immune system. Isosteviol (IS) has been reported to possess anti-inflammatory properties. In this study, we aimed to investigate effects and mechanisms of IS against intestinal inflammation. C57BL/6 mice were randomly divided into Sham, IS, dextran sodium sulfate (DSS), and DSS + IS groups. In vivo colitis model was established using 3.0 % DSS. In vitro, tumor necrosis factor-α (TNF-α)-treated Caco-2 cells were used as an inflammatory model. Clinical characteristics, histological performance, proinflammatory cytokine expression, and intestinal barrier function were measured. In addition, activation of the pyruvate dehydrogenase kinase 1/protein kinase B/nuclear factor-κB (PDK1/AKT/NF-κB) signaling pathway was determined by western blotting and quantitative polymerase chain reaction. The results showed that IS mitigated DSS-induced colitis by reducing body weight loss, colonic shortening, and disease activity index score, and by inhibiting expressions of proinflammatory cytokines IL-1β, IL-6, and TNF-α. IS restored impaired barrier function by regulating tight junctions and intestinal epithelial permeability. Furthermore, we found that IS ameliorated intestinal barrier injury by regulating PDK1/AKT/NF-κB signaling pathway. In conclusion, our results demonstrate that IS attenuates experimental colitis by preserving intestinal barrier function, probably mediated by PDK1/AKT/NF-κB signaling pathway. These findings highlight the potential of IS as a therapeutic agent for IBD.
Collapse
|