1
|
Sarrou S, Voulgaridi I, Fousika A, Dadouli K, Margaritopoulou O, Kakkas I, Hadjichristodoulou C, Kalala F, Speletas M. Heterozygous SERPINA1 Defects and Their Impact on Clinical Manifestations of Patients with Predominantly Antibody Deficiencies. Int J Mol Sci 2024; 25:5382. [PMID: 38791420 PMCID: PMC11120870 DOI: 10.3390/ijms25105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Patients with predominantly antibody deficiencies (PADs) display hypogammaglobulinemia with a high prevalence of infections, along with autoimmune manifestations, benign and malignant lymphoproliferation and granulomatous disease. It is noteworthy that PAD patients, even those with defects in the same causative genes, display a variable clinical phenotype, suggesting that additional genetic polymorphisms, located in either immune-related or non-immune-related genes, may affect their clinical and laboratory phenotype. In this context, we analyzed 80 PAD patients, including 70 with common variable immunodeficiency (CVID) for SERPINA1 defects, in order to investigate the possible contribution to PAD clinical phenotype. Ten CVID patients carried heterozygous pathogenic SERPINA1 defects with normal alpha-1 antitrypsin levels. Interestingly, the presence of the Z allele (rs28929474), which was found in three patients, was significantly associated with liver disease; hepatic complications were also observed in patients carrying the p.Leu23Gln (rs1379209512) and the p.Phe76del (rs775982338) alleles. Conversely, no correlation of SERPINA1 defective variants with respiratory complications was observed, although patients with pathogenic variants exhibit a reduced probability of developing autoimmune diseases. Therefore, we recommend SERPINA1 genetic analysis in PAD in order to identify patients with a higher risk for liver disease.
Collapse
Affiliation(s)
- Styliani Sarrou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (S.S.); (A.F.); (O.M.); (F.K.)
| | - Ioanna Voulgaridi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (K.D.); (C.H.)
| | - Athanasia Fousika
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (S.S.); (A.F.); (O.M.); (F.K.)
| | - Katerina Dadouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (K.D.); (C.H.)
| | - Olympia Margaritopoulou
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (S.S.); (A.F.); (O.M.); (F.K.)
| | - Ioannis Kakkas
- Department of Immunology and Histocompatibility, “Evaggelismos” General Hospital, 10676 Athens, Greece;
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larissa, Greece; (I.V.); (K.D.); (C.H.)
| | - Fani Kalala
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (S.S.); (A.F.); (O.M.); (F.K.)
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (S.S.); (A.F.); (O.M.); (F.K.)
| |
Collapse
|
2
|
Chung SW, Hong SJ. Application of Salivary Alpha-1 Antitrypsin in the Diagnosis of Rheumatoid Arthritis: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:605. [PMID: 38674251 PMCID: PMC11052413 DOI: 10.3390/medicina60040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Background and Objective: Rheumatoid arthritis (RA) is an autoimmune disease in which joints are gradually destroyed. Early diagnosis and treatment before joint deformation or destruction is important. The detection of novel RA biomarkers in saliva may facilitate early detection of RA before disease onset. This study aimed to evaluate salivary concentration of α1-antitrypsin (A1AT) in healthy patients and those with RA, and to assess the diagnostic value of salivary A1AT. Materials and Methods: In total, 80 participants were included: 20 healthy participants, and 60 patients with RA. Saliva and serum samples were obtained from all the patients. Levels of A1AT and cytokines, including interleukin-1 beta (IL-1β), IL-6, and IL-10 in saliva and serum, were evaluated using an enzyme-linked immunosorbent assay kit and Luminex assay. Data were analyzed using SPSS for Windows. Results: There was a higher level of A1AT in the saliva of patients with RA (median: 2388.66 ng/mL) than that in healthy controls (1579.06 ng/mL). There was a positive mild-to-moderate accuracy (area under the curve: 0.57-0.85) of A1AT in saliva to diagnose RA. The cut-off level (ng/mL) of A1AT in saliva for detecting RA was 1689.0. Conclusions: The obtained data can promote the application of the measurements of A1AT in saliva to diagnose RA.
Collapse
Affiliation(s)
- Sang Wan Chung
- Division of Rheumatology, Department of Internal Medicine Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | | |
Collapse
|
3
|
Zöller D, Haverkamp C, Makoudjou A, Sofack G, Kiefer S, Gebele D, Pfaffenlehner M, Boeker M, Binder H, Karki K, Seidemann C, Schmeck B, Greulich T, Renz H, Schild S, Seuchter SA, Tibyampansha D, Buhl R, Rohde G, Trudzinski FC, Bals R, Janciauskiene S, Stolz D, Fähndrich S. Alpha-1-antitrypsin-deficiency is associated with lower cardiovascular risk: an approach based on federated learning. Respir Res 2024; 25:38. [PMID: 38238846 PMCID: PMC10797985 DOI: 10.1186/s12931-023-02607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory multisystemic disease caused by environmental exposures and/or genetic factors. Inherited alpha-1-antitrypsin deficiency (AATD) is one of the best recognized genetic factors increasing the risk for an early onset COPD with emphysema. The aim of this study was to gain a better understanding of the associations between comorbidities and specific biomarkers in COPD patients with and without AATD to enable future investigations aimed, for example, at identifying risk factors or improving care. METHODS We focused on cardiovascular comorbidities, blood high sensitivity troponin (hs-troponin) and lipid profiles in COPD patients with and without AATD. We used clinical data from six German University Medical Centres of the MIRACUM (Medical Informatics Initiative in Research and Medicine) consortium. The codes for the international classification of diseases (ICD) were used for COPD as a main diagnosis and for comorbidities and blood laboratory data were obtained. Data analyses were based on the DataSHIELD framework. RESULTS Out of 112,852 visits complete information was available for 43,057 COPD patients. According to our findings, 746 patients with AATD (1.73%) showed significantly lower total blood cholesterol levels and less cardiovascular comorbidities than non-AATD COPD patients. Moreover, after adjusting for the confounder factors, such as age, gender, and nicotine abuse, we confirmed that hs-troponin is a suitable predictor of overall mortality in COPD patients. The comorbidities associated with AATD in the current study differ from other studies, which may reflect geographic and population-based differences as well as the heterogeneous characteristics of AATD. CONCLUSION The concept of MIRACUM is suitable for the analysis of a large healthcare database. This study provided evidence that COPD patients with AATD have a lower cardiovascular risk and revealed that hs-troponin is a predictor for hospital mortality in individuals with COPD.
Collapse
Affiliation(s)
- Daniela Zöller
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany.
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany.
| | - Christian Haverkamp
- Institute of Digitalization in Medicine, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
| | - Adeline Makoudjou
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Ghislain Sofack
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Saskia Kiefer
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Denis Gebele
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Michelle Pfaffenlehner
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Martin Boeker
- Institute of Artificial Intelligence and Informatics in Medicine, Medical Centre Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
- Freiburg Centre for Data Analysis and Modelling, University of Freiburg, Freiburg, Germany
| | - Kapil Karki
- Data Integration Centre, Medical Faculty, Philipps-University Marburg, Marburg, Germany
| | - Christian Seidemann
- Data Integration Centre, Medical Faculty, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- German Centres for Lung Research (DZL) and for Infectious Disease Research (DZIF), SYNMIKRO Centre for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- German Centres for Lung Research (DZL) and for Infectious Disease Research (DZIF), SYNMIKRO Centre for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, German Centre for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Stefanie Schild
- Medical Centre for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Susanne A Seuchter
- Medical Centre for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Dativa Tibyampansha
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Buhl
- Pulmonary Department, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Medical Clinic I, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Franziska C Trudzinski
- Department of Pneumology and Critical Care Medicine, German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), University of Heidelberg, Thoraxklinik, Heidelberg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Critical Care Medicine, Saarland University Medical Centre, Saarland University Hospital, 66421, Homburg/Saar, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Centre for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Daiana Stolz
- Department of Pneumology, University Medical Centre Freiburg, Freiburg, Germany
| | - Sebastian Fähndrich
- Department of Pneumology, University Medical Centre Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Lv Y, Shao Y, Jiang C, Wang Y, Li Y, Li Y, Duan X, Dong S, Lin J, Zhang H, Shan H. Quantitative proteomics based on TMT revealed the response of PK15 cells infected PEDV wild strain. Microb Pathog 2024; 186:106503. [PMID: 38142905 DOI: 10.1016/j.micpath.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.
Collapse
Affiliation(s)
- Yuting Lv
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yu Shao
- Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chengyuan Jiang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., LTD, Binzhou, Shandong, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Li
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Xiaoxiao Duan
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaxu Lin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
6
|
Perez-Luz S, Matamala N, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. NAFLD and AATD Are Two Diseases with Unbalanced Lipid Metabolism: Similarities and Differences. Biomedicines 2023; 11:1961. [PMID: 37509601 PMCID: PMC10377048 DOI: 10.3390/biomedicines11071961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. In this review, we discuss the similarities and differences between the molecular pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to investigate the physio pathological mechanisms of liver steatosis.
Collapse
Affiliation(s)
- Sara Perez-Luz
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Gema Gomez-Mariano
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Sabina Janciauskiene
- Department of Respiratory Medicine and Infectious Diseases, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover Medical School, 30625 Hannover, Germany
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|