1
|
Pan X, Zhu R, Peng J, Liu H, Pan W, Jin Y, Pei J, Zhang L. Molecular mechanisms and potential targets of lycopene for alleviating renal ischemia-reperfusion injury revealed by network pharmacology and animal experiments. Int Immunopharmacol 2024; 143:113421. [PMID: 39442187 DOI: 10.1016/j.intimp.2024.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Renal IRI is one of the leading causes of AKI. How to effectively mitigate renal IRI is important for the recovery of renal function. The regulatory mechanism of lycopene, a natural antioxidant, in renal IRI is currently unknown. Therefore, we utilized network pharmacology and animal experiments to explore the possible mechanisms and potential targets of lycopene for alleviating renal IRI. METHODS We obtained lycopene-regulated genes and renal IRI-related genes from the CTD database and GeneCards database, respectively. Subsequently, the two were intersected and the intersecting genes we defined as lycopene-regulated genes in renal IRI. Next, we explored their potential biological functions and mechanisms through enrichment analysis. Meanwhile, we constructed a rat renal IRI model and validated the protective effects of lycopene and related mechanisms. To further explore the Hub genes regulated by lycopene, we constructed a PPI protein interactions network and characterized the Hub genes using Cytoscape software. We also verified the expression of Hub genes using animal experiments and molecular docking techniques. Finally, we constructed TF-Hub gene and miRNA-Hub gene regulatory networks. RESULTS We obtained a total of 255 lycopene-regulated genes and 327 renal IRI-related genes. The enrichment analysis revealed that they were closely related to the regulation of oxidative stress as well as the regulation of inflammatory factors. At the same time, the MAPK signaling pathway was significantly enriched. Next, we found in animal experiments that lycopene significantly alleviated the level of oxidative stress and inflammation during renal IRI, and had a protective effect on kidney damage. Also, we found that this protective effect may be achieved by inhibiting the MAPK signaling pathway. Next, we identified a total of five Hub genes using Cytoscape software: TNF, AKT1, MAPK3, IL6 and CASP3. Both animal experiments and molecular docking techniques demonstrated that lycopene can effectively regulate the expression of Hub genes. Finally, our constructed TF-Hub gene and miRNA-Hub gene regulatory network provide a theoretical basis for further regulation of Hub genes in follow-up. CONCLUSIONS This study suggests that lycopene is a promising option in mitigating renal IRI. Lycopene may exert protective effects by inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xingyu Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Rong Zhu
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jinpu Peng
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongli Liu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Wenqing Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Yuhan Jin
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Jun Pei
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Li Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China.
| |
Collapse
|
2
|
Peng T, Li M. Research progress of traditional Chinese medicines in regulating acute kidney injury-related ferroptosis: a literature review. Int Urol Nephrol 2024:10.1007/s11255-024-04302-3. [PMID: 39680293 DOI: 10.1007/s11255-024-04302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Ferroptosis plays a significant role in the pathological mechanism of acute kidney injury (AKI) for many etiologies. The characteristics of ferroptosis involve many aspects, including iron metabolism, lipid metabolism, and glutathione metabolism. In terms of iron metabolism, ferroptosis involves the accumulation of labile iron; in terms of lipid metabolism, ferroptosis involves the peroxidation of lipids, especially certain phospholipids; in terms of glutathione metabolism, ferroptosis involves the reduction of reduced glutathione (GSH) levels, leading to a decrease in the activity of glutathione peroxidase 4 (GPX4). A lot of traditional Chinese medicines (TCMs) have been reported to have a protective effect against AKI, and many of these TCMs have shown a close association with regulating ferroptosis in ameliorating AKI. While the mechanisms through which these TCMs regulate ferroptosis associated with AKI are intricate, many of their targets are linked to the inhibition of lipid peroxidation or the regulation of iron metabolism. This article discusses some aspects of AKI and ferroptosis, and reviews some research progress on the regulation of AKI-related ferroptosis by TCMs.
Collapse
Affiliation(s)
- Tao Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingquan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang T, Li B, Wang J, Wu X, Song L, Wang Y, Zhang Y, Li Y. Introduced paeoniflorin reduces the main toxicity induced by diosbulbin B, the major toxic compound of Dioscorea bulbifera L.: involved inhibiting inflammation and ferroptosis. Drug Chem Toxicol 2024:1-10. [PMID: 39686661 DOI: 10.1080/01480545.2024.2440451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Rhizoma Dioscoreae Bulbiferae (HYZ) is a widely utilized herb in clinical practice, known for its significant biological activities. However, the associated hepatotoxicity poses limitations to its application. Our previous research indicated that the effective mitigation of HYZ-induced hepatotoxicity through the concoction with Radix Paeoniae Alba medicinal juice involves the incorporation of paeoniflorin (Pae) and a reduction in diosbulbin B (DB), the primary toxic compound in HYZ. This finding suggests that the introduced Pae may exert a direct attenuating effect on DB. In light of this, this study represents the first investigation into Pae's detoxification effect against DB-induced hepatotoxicity after administration for 2 months in mice vivo while also exploring underlying mechanisms related to inflammation and ferroptosis based on network pharmacology results. Our findings demonstrate that Pae significantly alleviates DB-induced hepatotoxicity in a dose-dependent manner. Western blotting and ELISA analyses revealed that Pae effectively reversed elevated levels of hepatic inflammation-related markers-such as NF-κB, p38 MAPK, NLRP3, TNF-α, and IL-1β-as well as excessively high concentrations of ferroptosis-related MDA and Fe2+. Furthermore, it restored low levels of GSH, SOD, GPX4, and FTH1. In summary, introduced Pae substantially mitigated DB-induced hepatotoxicity by inhibiting both hepatocyte inflammation and ferroptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Shu G, Wang C, Song A, Zheng Z, Zheng S, Song Y, Wang X, Yu H, Yin S, Deng X. Water extract of earthworms mitigates kidney injury triggered by oxidative stress via activating intrarenal Sirt1/Nrf2 cascade and ameliorating mitochondrial damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118648. [PMID: 39089659 DOI: 10.1016/j.jep.2024.118648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemia-reperfusion (IR) injury can result in acute renal failure. Oxidative stress is a major factor in IR-induced cell death in the kidneys. According to traditional Chinese medicine, earthworms (Pheretima aspergillum) can be used to treat various kidney diseases. AIM OF THE STUDY The present study was designed to understand the protective effects of the water extract of earthworms (WEE) against oxidative stress on the kidneys and the crucial molecular events associated with its nephroprotective activity. MATERIALS AND METHODS Cytotoxicity caused by H2O2 in HEK293, HK2, and primary mouse renal tubular epithelial cells (TECs) was used to investigate the effect of WEE on oxidative stress-induced renal injury in vitro. IR-induced kidney injury was established using rats as an in vivo model. The WEE-mediated protection of the kidneys against oxidative stress was compared with that of glutathione, a common antioxidant used as a positive control. RESULTS In HEK293 cells, HK2 cells, and primary mouse TECs, WEE relieved H2O2-induced mitochondrial damage, apoptosis, and ferroptosis. In kidney cells, WEE increased the expression of Sirt1, boosted LKB1 and AMPK phosphorylation, and upregulated nuclear Nrf2. Suppression of Sirt1 and LKB1 knock down abrogated WEE-induced protection against H2O2. WEE ameliorated IR-induced kidney injury and intrarenal inflammation in rats. In rat kidneys, WEE mitigated mitochondrial damage and suppressed IR-induced apoptosis and ferroptosis. Mechanistically, WEE increased Sirt1 expression, enhanced the phosphorylation of LKB1 and AMPK, and increased intranuclear Nrf2 levels in IR kidneys. IR treatment resulted in considerable increase in renal MDA levels and a prominent decrease in antioxidative enzyme activity. These lesions were significantly alleviated by WEE. CONCLUSIONS WEE mitigated H2O2-induced cytotoxicity in kidney cells in vitro and improved IR-induced kidney damage in rats. Mechanistically, WEE potentiated the Sirt1/Nrf2 axis and relieved mitochondrial damage in the kidney cells. These events inhibited the apoptosis and ferroptosis induced by oxidative stress. Our findings support the potential application of WEE for the clinical treatment of kidney diseases caused by intrarenal oxidative stress.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhiyong Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shanshan Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yanglu Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
5
|
Wang Z, Yang J, He P, Lan J, Shi T, Xu S, Hao Z, Xi Y, Wang J, He P. Therapeutic effect of total glucosides of paeony on IgA vasculitis nephritis: progress and prospects. Mol Biol Rep 2024; 52:13. [PMID: 39585482 PMCID: PMC11588768 DOI: 10.1007/s11033-024-10041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
IgA vasculitis nephritis (IgAVN), a type of immune system disease characterized by the deposition of IgA in the mesangial area of the glomerulus, is most common in children. Corticosteroids and immunosuppressants agents are commonly prescribed for the clinical management of IgAVN; however, these therapies are associated with numerous adverse reactions. This necessitates the discovery of alternative, potential therapeutic agents that can offer a safer treatment option. Natural plants contain abundant total glucosides of paeony (TGP), which represent one of the most prevalent secondary metabolites found within these organisms. TGP has been proven to be a safe and desirable natural medicine, with the most central ingredient being polyphenolic. TGP, a naturally occurring and cost-effective compound, exerts its therapeutic influence on IgAVN via diverse pathways and targets, with minimal side effects. Its substantial clinical potential underscores the importance of delving deeper into its pharmacological mechanisms, which hold great promise for novel drug development. This review examines the multifaceted therapeutic mechanisms of TGP in IgAVN encompassing modulation of Wnt/β-catenin pathways and programmed cell death pathways, antioxidant and anti-inflammatory effects, and enhancement of vascular repair. Additionally, we provide an overview of recent advancements in enhancing the bioavailability of TGP and highlight crucial considerations that may inform future research endeavors.
Collapse
Affiliation(s)
- Zhifeng Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiao Yang
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfen He
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junfeng Lan
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting Shi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shuangfeng Xu
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhihui Hao
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujiang Xi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Jian Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Ping He
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Chen D, Shi J, Wu Y, Miao L, Wang Z, Wang Y, Xu S, Lou Y. Dapagliflozin alleviates high-fat-induced obesity cardiomyopathy by inhibiting ferroptosis. ESC Heart Fail 2024. [PMID: 39523867 DOI: 10.1002/ehf2.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Dapagliflozin (Dapa) is a novel hypoglycaemic agent with multiple cardiovascular protective effects, and it is widely used in treatment of heart failure patients, but whether it can improve obese phenotype of heart failure and its mechanism is still unclear. Ferroptosis is an iron dependent form of cell death and has been proved to be an important role in heart failure. The aim of this study is to determine whether Dapa improves obesity-related heart failure by regulating ferroptosis in high-fat diet rats. METHODS AND RESULTS Male SD rats were fed a high-fat diet for 12 weeks and confirmed of obese heart failure by metabolic parameters and cardiac ultrasound. Being overweight by 20% compared with the normal group, with elevated systolic blood pressure and abnormal levels of insulin and blood lipid (TG and LDL-c), is recognized as obesity. The obese rats with reduced EF, FS, and E/A shown on ultrasound are defined as the obese heart failure (OHF) group. Histological tests confirmed the more pronounced cardiac fibrosis, mitochondrial volume and collagen deposition in OHF group. Dapa treatment effectively reduced body weight, INS, ISI/IRI index, TG and HDL-C levels (P < 0.05). Also, Dapa administration can slightly decrease the SBP and DBP levels; however, there was no statistical difference among those four groups. Furthermore, Dapa treatment can significantly improve high-fat induced systolic and diastolic dysfunction via regulating cardiac histological abnormalities, including less obvious mitochondrial swelling, muscle fibre dissolution and collagen deposition. Additionally, genes from the OHF group were used by GO enrichment analysis, and it shows that ferroptosis metabolic pathway participated in the development of obese phenotype of heart failure. More importantly, Dapa significantly inhibited Fe2+ and MDA levels (P < 0.05), but augmented GSH content (P < 0.05). In addition, the mRNAs and protein expression of some important regulators of ferroptosis, like GPX4, SLC7A11, FTH1 and FPN1, were all decreased after Dapa intervention. CONCLUSION Dapa improved high-fat induced obese cardiac dysfunction via regulating ferroptosis pathway.
Collapse
Affiliation(s)
- Di Chen
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jiahao Shi
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Wu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lizhu Miao
- Yancheng No. 1 People's Hospital, Yancheng, China
| | - Zilin Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yixuan Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Siwei Xu
- Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, China
| | - Yu Lou
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Zheng D, Jin S, Liu PS, Ye J, Xie X. Targeting ferroptosis by natural products in pathophysiological conditions. Arch Toxicol 2024; 98:3191-3208. [PMID: 38987487 DOI: 10.1007/s00204-024-03812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Ferroptosis is a form of cell death that is induced by iron-mediated accumulation of lipid peroxidation. The involvement of ferroptosis in different pathophysiological conditions has offered new perspectives on potential therapeutic interventions. Natural products, which are widely recognized for their significance in drug discovery and repurposing, have shown great promise in regulating ferroptosis by targeting various ferroptosis players. In this review, we discuss the regulatory mechanisms of ferroptosis and its implications in different pathological conditions. We dissect the interactions between natural products and ferroptosis in cancer, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury, liver injury, and cardiomyopathy, with an emphasis on the relevance of ferroptosis players to disease targetability.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jianping Ye
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
9
|
Xi H, Wang Z, Li M, Duan X, Li Y. Paeoniflorin Promotes Ovarian Development in Mice by Activating Mitophagy and Preventing Oxidative Stress. Int J Mol Sci 2024; 25:8355. [PMID: 39125927 PMCID: PMC11313479 DOI: 10.3390/ijms25158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
During the development of animal organs, various adverse stimuli or toxic environments can induce oxidative stress and delay ovarian development. Paeoniflorin (PF), the main active ingredient of the traditional Chinese herb Paeonia lactiflora Pall., has protective effects on various diseases by preventing oxidative stress. However, the mechanism by which PF attenuates oxidative damage in mouse ovaries remains unclear. We evaluated the protective effects of PF on ovaries in an H2O2-induced mouse oxidative stress model. The H2O2-induced mouse ovarian oxidative stress model was used to explore the protective effect of PF on ovarian development. Histology and follicular development were observed. We then detected related indicators of cell apoptosis, oxidative stress, and autophagy in mouse ovaries. We found that PF inhibited H2O2-induced ovarian cell apoptosis and ferroptosis and promoted granulosa cell proliferation. PF prevented oxidative stress by increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression levels. In addition, the autophagic flux of ovarian cells was activated and was accompanied by increased lysosomal biogenesis. Moreover, PF-mediated autophagy was involved in clearing mitochondria damaged by H2O2. Importantly, PF administration significantly increased the number of primordial follicles, primary follicles, secondary follicles, and antral follicles. PF administration improved ovarian sizes compared with the H2O2 group. The present study suggested that PF administration reversed H2O2-induced ovarian developmental delay and promoted follicle development. PF-activated mitophagy is crucial for preventing oxidative stress and improving mitochondrial quality.
Collapse
Affiliation(s)
| | | | | | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| |
Collapse
|
10
|
Guo S, Zhou L, Liu X, Gao L, Li Y, Wu Y. Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155757. [PMID: 38805781 DOI: 10.1016/j.phymed.2024.155757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND In acute kidney injury (AKI), ferroptosis is the main mechanism of cell death in the renal tubular epithelium. Baicalein, a traditional Chinese medicine monomer, plays a protective role in various kidney diseases; however, the effect of baicalein on ferroptosis in AKI still needs further exploration. PURPOSE In this study, we explored the role of baicalein and its specific mechanism in mediating ferroptosis in cisplatin-induced AKI. METHODS We used a cisplatin-induced AKI model to study the effects of baicalein on renal tissue and tubular epithelial cell injury. The effects of baicalein on tubular epithelial cell ferroptosis were detected in cisplatin-induced AKI and further verified by folic acid-induced AKI. The Swiss Target Prediction online database was used to predict the possible mechanism by which baicalein regulates ferroptosis, and the specific target proteins were further verified. Molecular docking and SPR were used to further determine the binding potential of baicalein to the target protein. Finally, RNA interference (RNAi) technology and enzymatic inhibition were used to determine whether baicalein regulates ferroptosis through target proteins. RESULTS Baicalein alleviated cisplatin- and folic acid-induced renal dysfunction and pathological damage and improved cisplatin-induced HK2 cell injury. Mechanistically, baicalein reduced the expression of 12-lipoxygenase (ALOX12), which inhibits phospholipid peroxidation and ferroptosis in AKI. Molecular docking and SPR demonstrated direct binding between baicalein and ALOX12. Finally, we found that silencing ALOX12 had a regulatory effect similar to that of baicalein. Comparable results were also obtained with the ALOX12 inhibitor ML355. CONCLUSION This was the first study to confirm that baicalein regulates ferroptosis both in vitro and in vivo in cisplatin-induced AKI and to verify the regulatory effect of baicalein in folic acid-induced AKI. Our results reveal the critical role of ALOX12 in kidney damage and ferroptosis caused by cisplatin and emphasize the regulatory effect of baicalein on renal tubular epithelial cell ferroptosis mediated by ALOX12. Baicalein is an effective drug for treating AKI, and ALOX12 is a potential drug target.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
11
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
13
|
Xue X, Wang L, Wu R, Li Y, Liu R, Ma Z, Jia K, Zhang Y, Li X. Si-Wu-Tang alleviates metabolic dysfunction-associated fatty liver disease by inhibiting ACSL4-mediated arachidonic acid metabolism and ferroptosis in MCD diet-fed mice. Chin Med 2024; 19:79. [PMID: 38844978 PMCID: PMC11157816 DOI: 10.1186/s13020-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease worldwide. Si-Wu-Tang (SWT), a traditional Chinese medicine decoction has shown therapeutic effects on various liver diseases. However, the hepatoprotective effects and underlying mechanism of SWT on MAFLD remain unclear. METHODS First, a methionine-choline-deficient (MCD) diet-fed mice model was used and lipidomic analysis and transcriptomic analysis were performed. The contents of total iron ions, ferrous ions, and lipid peroxidation were detected and Prussian blue staining was performed to confirm the protective effects of SWT against ferroptosis. Finally, chemical characterization and network pharmacological analysis were employed to identify the potential active ingredients. RESULTS Serological and hepatic histopathological findings indicated SWT's discernible therapeutic impact on MCD diet-induced MAFLD. Lipidomic analysis revealed that SWT improved intrahepatic lipid accumulation by inhibiting TG synthesis and promoting TG transport. Transcriptomic analysis suggested that SWT ameliorated abnormal FA metabolism by inhibiting FA synthesis and promoting FA β-oxidation. Then, ferroptosis phenotype experiments revealed that SWT could effectively impede hepatocyte ferroptosis, which was induced by long-chain acyl-CoA synthetase 4 (ACSL4)-mediated esterification of arachidonic acid (AA). Finally, chemical characterization and network pharmacological analysis identified that paeoniflorin and other active ingredients might be responsible for the regulative effects against ferroptosis and MAFLD. CONCLUSION In conclusion, our study revealed the intricate mechanism through which SWT improved MCD diet-induced MAFLD by targeting FA metabolism and ferroptosis in hepatocytes, thus offering a novel therapeutic approach for the treatment of MAFLD and its complications.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
14
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
15
|
Chen T, Liang L, Wang Y, Li X, Yang C. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism. Apoptosis 2024; 29:289-302. [PMID: 38095762 PMCID: PMC10873465 DOI: 10.1007/s10495-023-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 02/18/2024]
Abstract
Metal ions play an important role in living organisms and are involved in essential physiological activities. However, the overload state of ions can cause excess free radicals, cell damage, and even cell death. Ferroptosis and cuproptosis are specific forms of cell death that are distinct from apoptosis, necroptosis, and other regulated cell death. These unique modalities of cell death, dependent on iron and copper, are regulated by multiple cellular metabolic pathways, including steady-state metal redox treatment mitochondrial activity of lipid, amino acid and glucose metabolism, and various signaling pathways associated with disease. Although the mechanisms of ferroptosis and cuproptosis are not yet fully understood, there is no doubt that ion overload plays a crucial act in these metal-dependent cell deaths. In this review, we discussed the core roles of ion overload in ferroptosis and cuproptosis, the association between metabolism imbalance and ferroptosis and cuproptosis, the extract the diseases caused by ion overload and current treatment modalities.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
- Zhangjiang Institue of Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Yang M, Jiang G, Li Y, Chen W, Zhang S, Wang R. Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study. Pharm Dev Technol 2024; 29:176-186. [PMID: 38376879 DOI: 10.1080/10837450.2024.2319738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yumeng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shantang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
17
|
Wu H, Zhang P, Zhou J, Hu S, Hao J, Zhong Z, Yu H, Yang J, Chi J, Guo H. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. Am J Physiol Cell Physiol 2024; 326:C724-C741. [PMID: 38223927 DOI: 10.1152/ajpcell.00565.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.
Collapse
Affiliation(s)
- Haowei Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Peipei Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiedong Zhou
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Songqing Hu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinjin Hao
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haijun Yu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Juntao Yang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Hangyuan Guo
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Cao C, Qi YT, Wang AA, Wang ZY, Liu ZX, Meng HX, Li L, Liu JX. Huoxin Pill Reduces Myocardial Ischemia Reperfusion Injury in Rats via TLR4/NFκB/NLRP3 Signaling Pathway. Chin J Integr Med 2023; 29:1066-1076. [PMID: 37608040 DOI: 10.1007/s11655-023-3640-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats. METHODS Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat's heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1β (IL-1β) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3). RESULTS Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1β (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01). CONCLUSIONS HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Tong Qi
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Ao-Ao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zi-Yan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zi-Xin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Hong-Xu Meng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jian-Xun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Wang H, Guo S, Wang B, Liu X, Gao L, Chen C, Wu Y. Carnosine attenuates renal ischemia-reperfusion injury by inhibiting GPX4-mediated ferroptosis. Int Immunopharmacol 2023; 124:110850. [PMID: 37633236 DOI: 10.1016/j.intimp.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Increasing evidence and our preliminary work have revealed the significant role of ferroptosis in acute kidney injury (AKI) induced by ischemia/reperfusion (IR). Carnosine (Car), a dipeptide consisting of β-alanine and L-histidine, has been shown to ameliorate HG-induced tubular epithelial cells inflammation. Whether Car exerts protective effects on AKI, and its molecular mechanism have not been clarified. Our in vivo and in vitro IR-AKI mouse models demonstrated that Car alleviates kidney injury, inflammation and ferroptosis. In hypoxia/reoxygenation (HR) induced human renal tubular epithelial cells (HK2), Car treatment reduced lipid peroxidation and iron accumulation, suppressed oxidative stress, and inhibited ferroptosis. Through cellular thermal shift assay (CETSA) and molecular docking, we identified GPX4 as a potential target that binds with Car. Further study showed that overexpressed GPX4 had a comparable protective effect on HK2 cells under HR conditions, similar to Car. Additionally, our findings demonstrated that Car exhibited similar anti-ferroptosis effects in both folic acid (FA)-induced AKI mouse models and Erastin induced HK2 cells. In conclusion, our results highlight that Car alleviate renal IR injury by inhibiting GPX4-mediated ferroptosis. Car shows promise as a potential therapeutic drug for IR-AKI and other diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Huaying Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
20
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Pei J, Tian X, Yu C, Luo J, Hong Y, Zhang J, Wen S, Hua Y, Wei G. Transcriptome-based exploration of potential molecular targets and mechanisms of selenomethionine in alleviating renal ischemia-reperfusion injury. Clin Sci (Lond) 2023; 137:1477-1498. [PMID: 37706564 DOI: 10.1042/cs20230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Renal ischemia-reperfusion injuries (IRIs) are one of the leading causes of acute kidney injuries (AKIs). Selenium, as an essential trace element, is able to antioxidant stress and reduces inflammatory responses. The regulation mechanism of selenomethionine, one of the major forms of selenium intake by humans, is not yet clear in renal IRIs. Therefore, we aimed to explore the key targets and related mechanisms of selenomethionine regulation in renal IRIs and provide new ideas for the treatment of selenomethionine with renal IRIs. We used transcriptome sequencing data from public databases as well as animal experiments to explore the key target genes and related mechanisms regulated by selenomethionine in renal IRI. We found that selenomethionine can effectively alleviate renal IRI by a mechanism that may be achieved by inhibiting the MAPK signaling pathway. Meanwhile, we also found that the key target of selenomethionine regulation in renal IRI might be selenoprotein GPX3 based on the PPI protein interaction network and machine learning. Through a comprehensive analysis of bioinformatic techniques and animal experiments, we found that Gpx3 might serve as a key gene for the regulation of selenomethionine in renal IRIs. Selenomethionine may exert a protective effect against renal IRI by up-regulating GPX3, inhibiting the MAPK signaling pathway, increased production of antioxidants, decreasing inflammation levels, mitigation of apoptosis in renal tubular epithelial cells, this reduces renal histopathological damage and protects renal function. Providing a theoretical basis for the mechanism of selenomethionine actions in renal IRIs.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
22
|
Lv S, Li H, Zhang T, Su X, Sun W, Wang Q, Wang L, Feng N, Zhang S, Wang Y, Cui H. San-Huang-Yi-Shen capsule ameliorates diabetic nephropathy in mice through inhibiting ferroptosis. Biomed Pharmacother 2023; 165:115086. [PMID: 37418978 DOI: 10.1016/j.biopha.2023.115086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.
Collapse
Affiliation(s)
- Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China; Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Huajun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Tianyu Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Nana Feng
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, China.
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| |
Collapse
|
23
|
Shi Y, Shi X, Zhao M, Chang M, Ma S, Zhang Y. Ferroptosis: A new mechanism of traditional Chinese medicine compounds for treating acute kidney injury. Biomed Pharmacother 2023; 163:114849. [PMID: 37172334 DOI: 10.1016/j.biopha.2023.114849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Acute kidney injury (AKI) is a major health concern owing to its high morbidity and mortality rates, to which there are no drugs or treatment methods, except for renal replacement therapy. Therefore, identifying novel therapeutic targets and drugs for treating AKI is urgent. Ferroptosis is an iron-dependent and lipid-peroxidation-driven regulatory form of cell death and is closely associated with the occurrence and development of AKI. Traditional Chinese medicine (TCM) has unique advantages in treating AKI due to its natural origin and efficacy. In this review, we summarize the mechanisms underlying ferroptosis and its role in AKI, and TCM compounds that play essential roles in the prevention and treatment of AKI by inhibiting ferroptosis. This review suggests ferroptosis as a potential therapeutic target for AKI, and that TCM compounds show broad prospects in the treatment of AKI by targeting ferroptosis.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|