1
|
Calvo-Rodriguez M, Kharitonova EK, Snyder AC, Hou SS, Sanchez-Mico MV, Das S, Fan Z, Shirani H, Nilsson KPR, Serrano-Pozo A, Bacskai BJ. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease. Mol Neurodegener 2024; 19:6. [PMID: 38238819 PMCID: PMC10797952 DOI: 10.1186/s13024-024-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Reactive oxidative stress is a critical player in the amyloid beta (Aβ) toxicity that contributes to neurodegeneration in Alzheimer's disease (AD). Damaged mitochondria are one of the main sources of reactive oxygen species and accumulate in Aβ plaque-associated dystrophic neurites in the AD brain. Although Aβ causes neuronal mitochondria reactive oxidative stress in vitro, this has never been directly observed in vivo in the living mouse brain. Here, we tested for the first time whether Aβ plaques and soluble Aβ oligomers induce mitochondrial oxidative stress in surrounding neurons in vivo, and whether this neurotoxic effect can be abrogated using mitochondrial-targeted antioxidants. METHODS We expressed a genetically encoded fluorescent ratiometric mitochondria-targeted reporter of oxidative stress in mouse models of the disease and performed intravital multiphoton microscopy of neuronal mitochondria and Aβ plaques. RESULTS For the first time, we demonstrated by direct observation in the living mouse brain exacerbated mitochondrial oxidative stress in neurons after both Aβ plaque deposition and direct application of soluble oligomeric Aβ onto the brain, and determined the most likely pathological sequence of events leading to oxidative stress in vivo. Oxidative stress could be inhibited by both blocking calcium influx into mitochondria and treating with the mitochondria-targeted antioxidant SS31. Remarkably, the latter ameliorated plaque-associated dystrophic neurites without impacting Aβ plaque burden. CONCLUSIONS Considering these results, combination of mitochondria-targeted compounds with other anti-amyloid beta or anti-tau therapies hold promise as neuroprotective drugs for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
- Present address: Foundational Neuroscience Center, AbbVie Inc, Cambridge, MA, USA
| | - Elizabeth K Kharitonova
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Austin C Snyder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Maria Virtudes Sanchez-Mico
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Koren SA, Ahmed Selim N, De la Rosa L, Horn J, Farooqi MA, Wei AY, Müller-Eigner A, Emerson J, Johnson GVW, Wojtovich AP. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat Commun 2023; 14:6036. [PMID: 37758713 PMCID: PMC10533892 DOI: 10.1038/s41467-023-41682-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
Collapse
Affiliation(s)
- Shon A Koren
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nada Ahmed Selim
- University of Rochester Medical Center, Department of Pharmacology and Physiology, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Lizbeth De la Rosa
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Jacob Horn
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - M Arsalan Farooqi
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacen Emerson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Gail V W Johnson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA.
| |
Collapse
|
3
|
Wang J, Zhu Y, Chen Y, Huang Y, Guo Q, Wang Y, Chen A, Zhou Y, Xu L, Wang L, Zou X, Li X. Three-in-One Oncolytic Adenovirus System Initiates a Synergetic Photodynamic Immunotherapy in Immune-Suppressive Cholangiocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207668. [PMID: 37127884 DOI: 10.1002/smll.202207668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although photodynamic immunotherapy has been promoted in the clinical practice of cholangiocarcinoma, the insensitivity to photodynamic immunotherapy remains to be a great problem. This can be largely attributed to an immune-suppressive tumor microenvironment (TME) manifested as immature myeloid cells and exhausted cytotoxic T lymphocytes. Here, a three-in-one oncolytic adenovirus system PEG-PEI-Adv-Catalase-KillerRed (p-Adv-CAT-KR) has been constructed to multiply, initiate, and enhance immune responses in photodynamic immunotherapy, using genetically-engineered KillerRed as photosensitizer, catalase as in situ oxygen-supplying mediator, and adenovirus as immunostimulatory bio-reproducible carrier. Meanwhile, PEG-PEI is applied to protect adenovirus from circulating immune attack. The administration of p-Adv-CAT-KR induces increased antigen presenting cells, elevated T cell infiltrations, and reduced tumor burden. Further investigation into underlying mechanism indicates that hypoxia inducible factor 1 subunit alpha (Hif-1α) and its downstream PD-1/PD-L1 pathway contribute to the transformation of immune-suppressive TME in cholangiocarcinoma. Collectively, the combination of KillerRed, catalase, and adenovirus brings about multi-amplified antitumor photo-immunity and has the potential to be an effective immunotherapeutic strategy for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China
| | - Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
4
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
5
|
Yang YM, Jung Y, Abegg D, Adibekian A, Carroll KS, Karbstein K. Chaperone-directed ribosome repair after oxidative damage. Mol Cell 2023; 83:1527-1537.e5. [PMID: 37086725 PMCID: PMC10164075 DOI: 10.1016/j.molcel.2023.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Youngeun Jung
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Daniel Abegg
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Alexander Adibekian
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA; HHMI Faculty Scholar, Chevy Chase, MD 20815, USA.
| |
Collapse
|
6
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
7
|
Mattedi F, Chennell G, Vagnoni A. Detailed Imaging of Mitochondrial Transport and Precise Manipulation of Mitochondrial Function with Genetically Encoded Photosensitizers in Adult Drosophila Neurons. Methods Mol Biol 2022; 2431:385-407. [PMID: 35412288 DOI: 10.1007/978-1-0716-1990-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Precise distribution of mitochondria is essential for maintaining neuronal homeostasis. Although detailed mechanisms governing the transport of mitochondria have emerged, it is still poorly understood how the regulation of transport is coordinated in space and time within the physiological context of an organism. How alteration in mitochondrial functionality may trigger changes in organellar dynamics also remains unclear in this context. Therefore, the use of genetically encoded tools to perturb mitochondrial functionality in real time would be desirable. Here we describe methods to interfere with mitochondrial function with high spatiotemporal precision with the use of photosensitizers in vivo in the intact wing nerve of adult Drosophila. We also provide details on how to visualize the transport of mitochondria and to improve the quality of the imaging to attain super-resolution in this tissue.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - George Chennell
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Wohl Cellular Imaging Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
8
|
Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A, Chan ICW, Vail E, Villeri V, Langer JD, Schuman EM. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat Commun 2021; 12:6127. [PMID: 34675203 PMCID: PMC8531293 DOI: 10.1038/s41467-021-26365-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Collapse
Affiliation(s)
- Claudia M. Fusco
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kristina Desch
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Aline R. Dörrbaum
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,Present Address: MOS, Center for Mass Spectrometry and Optical Spectroscopy, Mannheim, Germany
| | - Mantian Wang
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.508836.0Present Address: Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anja Staab
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivy C. W. Chan
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.424247.30000 0004 0438 0426Present Address: German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eleanor Vail
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Veronica Villeri
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.412041.20000 0001 2106 639XPresent Address: Department of Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julian D. Langer
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.419494.50000 0001 1018 9466Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M. Schuman
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
9
|
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, Hou W, Cai Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 2021; 18:230. [PMID: 34645472 PMCID: PMC8513339 DOI: 10.1186/s12974-021-02284-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background Astrocytic glycogen works as an essential energy reserve for surrounding neurons and is reported to accumulate excessively during cerebral ischemia/reperfusion (I/R) injury. Our previous study found that accumulated glycogen mobilization exhibits a neuroprotective effect against I/R damage. In addition, ischemia could transform astrocytes into A1-like (toxic) and A2-like (protective) subtypes. However, the underlying mechanism behind accumulated glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury and its relationship with the astrocytic A1/A2 paradigm is unknown. Methods Astrocytic glycogen phosphorylase, the rate-limiting enzyme in glycogen mobilization, was specifically overexpressed and knocked down in mice and in cultured astrocytes. The I/R injury was imitated using a middle cerebral artery occlusion/reperfusion model in mice and an oxygen–glucose deprivation/reoxygenation model in cultured cells. Alterations in A1-like and A2-like astrocytes and the expression of phosphorylated nuclear transcription factor-κB (NF-κB) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were determined by RNA sequencing, immunofluorescence and immunoblotting. Metabolites, including glycogen, NADPH, glutathione and reactive oxygen species (ROS), were analyzed by biochemical analysis. Results Here, we observed that astrocytic glycogen mobilization inhibited A1-like astrocytes and enhanced A2-like astrocytes after reperfusion in an experimental ischemic stroke model in vivo and in vitro. In addition, glycogen mobilization could enhance the production of NADPH and glutathione by the pentose phosphate pathway (PPP) and reduce ROS levels during reperfusion. NF-κB inhibition and STAT3 activation caused by a decrease in ROS levels were responsible for glycogen mobilization-induced A1-like and A2-like astrocyte transformation after I/R. The astrocytic A1/A2 paradigm is closely correlated with glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury. Conclusions Our data suggest that ROS-mediated NF-κB inhibition and STAT3 activation are the key pathways for glycogen mobilization-induced neuroprotection and provide a promising metabolic target for brain reperfusion injury in ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02284-y.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ze Fan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lina Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Doutong Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Liu J, Wang F, Qin Y, Feng X. Advances in the Genetically Engineered KillerRed for Photodynamic Therapy Applications. Int J Mol Sci 2021; 22:ijms221810130. [PMID: 34576293 PMCID: PMC8468639 DOI: 10.3390/ijms221810130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases, and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, generally produce ROS through the type II reaction that highly relies on the local oxygen concentration. However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using genetic engineering techniques and targeted to unique cellular compartments, even within a single cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely attract the researchers’ focus. In particular, nanotechnology provides new opportunities for various modifications of KillerRed and versatile delivery strategies. This review more comprehensively outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are also discussed, either alone or in combination with other therapies. These overviews may facilitate understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent challenges to improve the efficiency and accuracy of PDT.
Collapse
|
11
|
Van Lent J, Verstraelen P, Asselbergh B, Adriaenssens E, Mateiu L, Verbist C, De Winter V, Eggermont K, Van Den Bosch L, De Vos WH, Timmerman V. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain 2021; 144:2471-2485. [PMID: 34128983 PMCID: PMC8418338 DOI: 10.1093/brain/awab226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Axonal Charcot-Marie-Tooth neuropathies (CMT type 2) are caused by inherited mutations in various genes functioning in different pathways. The type of genes and multiplicity of mutations reflect the clinical and genetic heterogeneity in CMT2 disease, which complicates the diagnosis and has halted therapy development. Here, we used CMT2 patient-derived pluripotent stem cells (iPSCs) to identify common hallmarks of axonal degeneration shared by different CMT2 subtypes. We compared the cellular phenotypes of neurons differentiated from CMT2 patient iPSCs with those from healthy controls and a CRISPR/Cas9-corrected isogenic line. Our results demonstrate neurite network alterations along with extracellular electrophysiological abnormalities in the differentiated motor neurons. Progressive deficits in mitochondrial and lysosomal trafficking, as well as in mitochondrial morphology, were observed in all CMT2 patient lines. Differentiation of the same CMT2 iPSC-lines into peripheral sensory neurons, only gave rise to cellular phenotypes in subtypes with sensory involvement, supporting the notion that some gene mutations predominantly affect motor neurons. We revealed a common mitochondrial dysfunction in CMT2-derived motor neurons, supported by alterations in the expression pattern and oxidative phosphorylation, which could be recapitulated in the sciatic nerve tissue of a symptomatic mouse model. Inhibition of a dual leucine zipper kinase (DLK) could partially ameliorate the mitochondrial disease phenotypes in CMT2 subtypes. Altogether, our data reveals shared cellular phenotypes across different CMT2 subtypes and suggests that targeting such common pathomechanisms could allow the development of a uniform treatment for CMT2.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Ligia Mateiu
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
| | - Christophe Verbist
- Laboratory of Molecular Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| |
Collapse
|
12
|
Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, Fazal R, Germeys C, Quaegebeur A, Fendt SM, Carmeliet P, Verfaillie C, Van Damme P, Ghesquière B, De Bock K, Van Den Bosch L. Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun 2019; 10:4147. [PMID: 31515480 PMCID: PMC6742665 DOI: 10.1038/s41467-019-12099-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Koen Veys
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Wenting Guo
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Katlijn Vints
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ann Swijsen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Guy Eelen
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Natalia V Gounko
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah-Maria Fendt
- VIB, VIB-KU Leuven Center for Cancer Biology, Laboratory of Cellular Metabolism and Metabolic Regulation, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Oncology, Metabolomics Core Facility, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Department of Oncology, Metabolomics Core Facility, Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, Laboratory of Exercise and Health, Zürich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium.
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
13
|
Mattedi F, Vagnoni A. Temporal Control of Axonal Transport: The Extreme Case of Organismal Ageing. Front Cell Neurosci 2019; 13:393. [PMID: 31555095 PMCID: PMC6716446 DOI: 10.3389/fncel.2019.00393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023] Open
Abstract
A fundamental question in cell biology is how cellular components are delivered to their destination with spatial and temporal precision within the crowded cytoplasmic environment. The long processes of neurons represent a significant spatial challenge and make these cells particularly dependent on mechanisms for long-range cytoskeletal transport of proteins, RNA and organelles. Although many studies have substantiated a role for defective transport of axonal cargoes in the pathogenesis of neurodevelopmental and neurodegenerative diseases, remarkably little is known about how transport is regulated throughout ageing. The scale of the challenge posed by ageing is considerable because, in this case, the temporal regulation of transport is ultimately dictated by the length of organismal lifespan, which can extend to days, years or decades. Recent methodological advances to study live axonal transport during ageing in situ have provided new tools to scratch beneath the surface of this complex problem and revealed that age-dependent decline in the transport of mitochondria is a common feature across different neuronal populations of several model organisms. In certain instances, the molecular pathways that affect transport in ageing animals have begun to emerge. However, the functional implications of these observations are still not fully understood. Whether transport decline is a significant determinant of neuronal ageing or a mere consequence of decreased cellular fitness remains an open question. In this review, we discuss the latest developments in axonal trafficking in the ageing nervous system, along with the early studies that inaugurated this new area of research. We explore the possibility that the interplay between mitochondrial function and motility represents a crucial driver of ageing in neurons and put forward the hypothesis that declining axonal transport may be legitimately considered a hallmark of neuronal ageing.
Collapse
Affiliation(s)
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Tam SW, Feng R, Lau WKW, Law ACK, Yeung PKK, Chung SK. Endothelin type B receptor promotes cofilin rod formation and dendritic loss in neurons by inducing oxidative stress and cofilin activation. J Biol Chem 2019; 294:12495-12506. [PMID: 31248984 DOI: 10.1074/jbc.ra118.005155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelin-1 (ET-1) is a neuroactive peptide produced by neurons, reactive astrocytes, and endothelial cells in the brain. Elevated levels of ET-1 have been detected in the post-mortem brains of individuals with Alzheimer's disease (AD). We have previously demonstrated that overexpression of astrocytic ET-1 exacerbates memory deficits in aged mice or in APPK670/M671 mutant mice. However, the effects of ET-1 on neuronal dysfunction remain elusive. ET-1 has been reported to mediate superoxide formation in the vascular system via NADPH oxidase (NOX) and to regulate the actin cytoskeleton of cancer cell lines via the cofilin pathway. Interestingly, oxidative stress and cofilin activation were both reported to mediate one of the AD histopathologies, cofilin rod formation in neurons. This raises the possibility that ET-1 mediates neurodegeneration via oxidative stress- or cofilin activation-driven cofilin rod formation. Here, we demonstrate that exposure to 100 nm ET-1 or to a selective ET type B receptor (ETB) agonist (IRL1620) induces cofilin rod formation in dendrites of primary hippocampal neurons, accompanied by a loss of distal dendrites and a reduction in dendritic length. The 100 nm IRL1620 exposure induced superoxide formation and cofilin activation, which were abolished by pretreatment with a NOX inhibitor (5 μm VAS2870). Moreover, IRL1620-induced cofilin rod formation was partially abolished by pretreatment with a calcineurin inhibitor (100 nm FK506), which suppressed cofilin activation. In conclusion, our findings suggest a role for ETB in neurodegeneration by promoting cofilin rod formation and dendritic loss via NOX-driven superoxide formation and cofilin activation.
Collapse
Affiliation(s)
- Sze-Wah Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China.
| | - Rui Feng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Special Education and Counseling, The Education University of Hong Kong, Hong Kong, China
| | - Andrew Chi-Kin Law
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, Royal College of Surgeons in Ireland at Perdana University, Selangor, Malaysia
| | | | - Sookja Kim Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Mitochondria-Derived Damage-Associated Molecular Patterns in Sepsis: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6914849. [PMID: 31205588 PMCID: PMC6530230 DOI: 10.1155/2019/6914849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is one of the most serious health hazards. Current research suggests that the pathogenesis of sepsis is mediated by both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Mitochondria are among the most important organelles in cells and determine their life and death. A variety of mitochondria-derived DAMPs (mtDAMPs) are similar to bacteria because mitochondria are derived from bacteria according to the mitochondrial endosymbiotic theory. Their activated signaling pathways extensively affect organ functions, the immune system, and metabolic functions in sepsis. In this review, we describe the essential roles of mtDAMPs in sepsis and discuss their research prospects and clinical importance.
Collapse
|