1
|
Strobl K, Klufa J, Jin R, Artner-Gent L, Krauß D, Novoszel P, Strobl J, Stary G, Vujic I, Griss J, Holcmann M, Farlik M, Homey B, Sibilia M, Bauer T. JAK-STAT1 as therapeutic target for EGFR deficiency-associated inflammation and scarring alopecia. EMBO Mol Med 2024; 16:3142-3168. [PMID: 39521937 PMCID: PMC11628629 DOI: 10.1038/s44321-024-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The hair follicle stem cell niche is an immune-privileged microenvironment, characterized by reduced antigen presentation, thus shielding against permanent immune-mediated tissue damage. In this study, we demonstrated the protective role of hair follicle-specific epidermal growth factor receptor (EGFR) against scarring hair follicle destruction. Mechanistically, disruption of EGFR signaling generated a cell-intrinsic hypersensitivity within the JAK-STAT1 pathway, which, synergistically with interferon gamma expressing CD8 T-cell and NK-cell-mediated inflammation, compromised the stem cell niche. Hair follicle-specific genetic depletion of either JAK1/2 or STAT1 or therapeutic inhibition of JAK1/2 ameliorated the inflammation, restored skin barrier function and activated the residual stem cells to resume hair growth in mouse models of epidermal and hair follicle-specific EGFR deletion. Skin biopsies from EGFR inhibitor-treated and cicatricial alopecia patients revealed an active JAK-STAT1 signaling signature along with upregulation of antigen presentation and downregulation of key components of the EGFR pathway. Our findings offer molecular insights and highlight a mechanism-based therapeutic strategy for addressing chronic folliculitis associated with EGFR-inhibitor anti-cancer therapy and cicatricial alopecia.
Collapse
Affiliation(s)
- Karoline Strobl
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Jörg Klufa
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Regina Jin
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Lena Artner-Gent
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Dana Krauß
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Igor Vujic
- Department of Dermatology, Venereology and Allergy, Clinical Center Landstrasse, Vienna, 1030, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| | - Thomas Bauer
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Fan Y, Wu T, Xu P, Yang C, An J, Zhang H, Abbas M, Dong X. Neratinib safety evaluation: real-world adverse event analysis from the FAERS database. Front Pharmacol 2024; 15:1425171. [PMID: 39346561 PMCID: PMC11427278 DOI: 10.3389/fphar.2024.1425171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Aims Neratinib has emerged as significant theraputic option for breast cancer treatment. However, despite its approval, numerous adverse drug events (ADEs) associated to it remain unrecognized and unreported. This study aims to mine and analyze the signals of ADEs related to neratinib from the US Food and Drug Administration Adverse Event Reporting System (FAERS) database, providing insights for safe and rational clinical use of drug. Methods All the neratinib-related ADEs data were collected from FAERS database from the third quarter (Q3) of 2017 to the fourth quarter (Q4) of 2023. After standardizing the data, 4 disproportionality methods were used to assess the correlation between neratinib and ADEs. Results Of the 1,544 ADEs implicating neratinib as the primary suspected drug, a combined total of 48 preferred terms (PTs) and 10 system organ classes (SOCs) showed significant disproportionality accross all four algorithms simultaneously. These SOCs included gastrointestinal disorders (n = 2,564, ROR 7.14), general disorders and administration site conditions (n = 958, ROR 0.77) and injury poisoning and procedural complications (n = 474, ROR 0.58) among others. Upon comparison with the neratinib manual, 34 ADEs not documented in the manual were found at the PT level. Conclusion Our study provide new real-world evidence for drug safety information of neratinib. While the majority of our findings were aligned with the information provided in the manual. We identified additional ADEs not previously documented. Consequently, further studies are needed to validate unreported ADEs to ensure the efficacy and safety of neratinib for patients.
Collapse
Affiliation(s)
- Yunhe Fan
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Teng Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyang Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chuanli Yang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Jie An
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haijia Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Mureed Abbas
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Perez White BE, Cable CJ, Shi B, Ventrella R, Kaplan N, Kobeissi A, Higuchi Y, Balu A, Murphy ZR, Kumar P, Getsios S. Receptor Tyrosine Kinase EPHA2 Drives Epidermal Differentiation through Regulation of EGFR Signaling. J Invest Dermatol 2024; 144:1798-1807.e1. [PMID: 38520417 PMCID: PMC11260533 DOI: 10.1016/j.jid.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 03/25/2024]
Abstract
Intricate signaling systems are required to maintain homeostasis and promote differentiation in the epidermis. Receptor tyrosine kinases are central in orchestrating these systems in epidermal keratinocytes. In particular, EPHA2 and EGFR transduce distinct signals to dictate keratinocyte fate, yet how these cell communication networks are integrated has not been investigated. Our work shows that loss of EPHA2 impairs keratinocyte stratification, differentiation, and barrier function. To determine the mechanism of this dysfunction, we drew from our proteomics data of potential EPHA2 interacting proteins. We identified EGFR as a high-ranking EPHA2 interactor and subsequently validated this interaction. We found that when EPHA2 is reduced, EGFR activation and downstream signaling are intensified and sustained. Evidence indicates that prolonged SRC association contributes to the increase in EGFR signaling. We show that hyperactive EGFR signaling underlies the differentiation defect caused by EPHA2 knockdown because EGFR inhibition restores differentiation in EPHA2-deficient 3-dimensional skin organoids. Our data implicate a mechanism whereby EPHA2 restrains EGFR signaling, allowing for fine tuning in the processes of terminal differentiation and barrier formation. Taken together, we purport that crosstalk between receptor tyrosine kinases EPHA2 and EGFR is critical for epidermal differentiation.
Collapse
Affiliation(s)
- Bethany E Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Calvin J Cable
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bo Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rosa Ventrella
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aya Kobeissi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yuya Higuchi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Abhinav Balu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zachary R Murphy
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Priya Kumar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Alibardi L, Surbek M, Eckhart L. Comparative immunohistochemical analysis suggests a conserved role of EPS8L1 in epidermal and hair follicle barriers of mammals. PROTOPLASMA 2024; 261:333-349. [PMID: 37889356 DOI: 10.1007/s00709-023-01898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The mammalian skin and its appendages depend on tightly coordinated differentiation of epithelial cells. Epidermal growth factor receptor (EGFR) pathway substrate 8 (EPS8) like 1 (EPS8L1) is enriched in the epidermis among human tissues and has also been detected in the epidermis of lizards. Here, we show by the analysis of single-cell RNA-sequencing data that EPS8L1 mRNA is co-expressed with filaggrin and loricrin in terminally differentiated human epidermal keratinocytes. Comparative genomics indicated that EPS8L1 is conserved in all main clades of mammals, whereas the orthologous gene has been lost in birds. Using a polyclonal antibody against EPS8L1, we performed an immunohistochemical screening of skin from diverse mammalian species and immuno-electron microscopy of human skin. EPS8L1 was detected predominantly in the granular layer of the epidermis in monotremes, marsupial, and placental mammals. The labeling was partly associated with cell membranes, and it was evident along the perimeter of keratinocytes at the transition with the cornified layer of the epidermis, similar to involucrin distribution. Basal, spinous, and the fully mature cornified layers lacked immunolabeling of EPS8L1. In addition to the epidermis, the hair follicle inner root sheath (IRS) was immunolabeled. Both epidermal granular layer and IRS contribute to the barrier function of the skin, suggesting that EPS8L1 is involved in the regulation of these barriers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, Via Selmi 3, University of Bologna, 40126, Bologna, Italy.
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Huang D, Ding H, Wang Y, Cheng G, Wang X, Leng T, Zhao H. Hair Follicle Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Wool Fiber Diameter in Angora Rabbits. BIOLOGY 2023; 12:biology12030445. [PMID: 36979137 PMCID: PMC10045444 DOI: 10.3390/biology12030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Wool fiber diameter (WFD) is an important index of wool traits and the main determinant of wool quality and value. However, the genetic determinants of fiber diameter have not yet been fully elucidated. Here, coarse and fine wool of Wan strain Angora rabbits and their hair follicle traits were characterized. The results indicated significant differences in the diameters of wool fibers and their hair follicles. The RNA sequencing (RNA-Seq) technique was used to identify differences in gene expression in hair follicles between coarse and fine wool. In total, 2574 differentially expressed genes (DEGs) were found between the two hair follicle groups. Transcription factors, keratin-associated protein (KAP) and keratin (KRT) families, and ECM-related genes may control the structure of fine fibers in rabbits. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that skin development, epidermal cell and keratinocyte differentiation, epithelium development, and Notch and ribosome signaling pathways were significantly enriched, respectively. GSEA further filtered six important pathways and related core genes. PPI analysis also mined functional DEGs associated with hair structure, including LEF1, FZD3, SMAD3, ITGB6, and BMP4. Our findings provide valuable information for researching the molecular mechanisms regulating wool fiber and could facilitate enhanced selection of super-fine wool rabbits through gene-assisted selection in the future.
Collapse
|
7
|
Wang H, Lan X, Noman M, Wang Z, Zhang J. Recombinant Oil-Body-Expressed Oleosin-hFGF5 in Arabidopsis thaliana Regulates Hair Growth. Genes (Basel) 2022; 14:genes14010021. [PMID: 36672762 PMCID: PMC9858518 DOI: 10.3390/genes14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
FGF5 (Fibroblast Growth Factor) is a member of the fibroblast growth factor family, which not only regulates growth and development but also inhibits hair regeneration. The oil-body expression vector pOTB-hFGF5 was constructed by the genetic engineering method and it was transformed into Arabidopsis by flora dip. T3 homozygous transgenic Arabidopsis was obtained after screening and propagation by the PCR and Western blot methods. The recombinant oil-body-expressed oleosin-hFGF5 can inhibit the proliferation of hair follicle epithelial cells and it exhibits the pharmacological activity of inhibiting hair regeneration in vivo by protein hybridization and imunohistochemistry. At the same time, the potential mechanism of recombinant oil-body-expressed oleosin-hFGF5 inhibiting hair growth was also revealed by RNA-Seq. This implies that the recombinant oil-body-expressed oleosin-hFGF5 has a good effect on inhibiting hair growth.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun 130118, China
| | - Xinxin Lan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| | - Ze Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Mucke H. Drug Repurposing Patent Applications April–June 2021. Assay Drug Dev Technol 2021. [DOI: 10.1089/adt.2021.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Monteagudo C, Fúnez R, Sánchez-Sendra B, González-Muñoz JF, Nieto G, Alfaro-Cervelló C, Murgui A, Barr RJ. Cutaneous Lymphadenoma Is a Distinct Trichoblastoma-like Lymphoepithelial Tumor With Diffuse Androgen Receptor Immunoreactivity, Notch1 Ligand in Reed-Sternberg-like Cells, and Common EGFR Somatic Mutations. Am J Surg Pathol 2021; 45:1382-1390. [PMID: 34232601 PMCID: PMC8428866 DOI: 10.1097/pas.0000000000001727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The term "cutaneous lymphadenoma" was coined in this journal for an unusual lymphoepithelial cutaneous adnexal neoplasm, possibly with immature pilosebaceous differentiation. Some authors further proposed that cutaneous lymphadenoma was an adamantinoid trichoblastoma. However, although a hair follicle differentiation is widely accepted, the fact that this is a lymphoepithelial tumor is not appropriately explained by the trichoblastoma hypothesis. Our goal was to further clarify the phenotypic and genotypic features of cutaneous lymphadenoma in a series of 11 cases. Histologically, a lobular architecture surrounded by a dense fibrous stroma was present in all cases. The lobules were composed of epithelial cells admixtured with small lymphocytes and isolated or clustered large Reed-Sternberg-like (RS-L) cells. The epithelial cells were diffusely positive for the hair follicle stem cell markers CK15, PHLDA1, and for androgen receptor. No immunostaining for markers of sebaceous differentiation was found. Intraepithelial lymphocytes were predominantly CD3+, CD4+, FoxP3+ T cells. RS-L cells showed both strong Jagged-1 and Notch1 cytoplasmic immunostaining. Androgen-regulated NKX3.1 nuclear immunostaining was present in a subset of large intralobular cells in all cases. Double immunostaining showed coexpression of NKX3.1 and CD30 in a subset of RS-L cells. No immunostaining for lymphocytic or epithelial markers was present in RS-L cells. EGFR, PIK3CA, and FGFR3 somatic mutations were found by next-generation sequencing in 56% of the cases. We consider that cutaneous lymphadenoma is a distinct benign lymphoepithelial tumor with androgen receptor and hair follicle bulge stem cell marker expression, RS-L cell-derived Notch1 ligand, and common EGFR gene mutations.
Collapse
Affiliation(s)
- Carlos Monteagudo
- Department of Pathology, University Clinic Hospital, INCLIVA Biomedical Research Institute
- Departments of Pathology
| | - Rafael Fúnez
- Department of Pathology, Costa del Sol Health Agency, Málaga, Spain
| | | | - José F. González-Muñoz
- Department of Pathology, University Clinic Hospital, INCLIVA Biomedical Research Institute
| | | | - Clara Alfaro-Cervelló
- Department of Pathology, University Clinic Hospital, INCLIVA Biomedical Research Institute
| | - Amelia Murgui
- Biochemistry and Molecular Biology, University of Valencia, Valencia
| | | |
Collapse
|
10
|
Pili Torti: A Feature of Numerous Congenital and Acquired Conditions. J Clin Med 2021; 10:jcm10173901. [PMID: 34501349 PMCID: PMC8432236 DOI: 10.3390/jcm10173901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pili torti is a rare condition characterized by the presence of the hair shaft, which is flattened at irregular intervals and twisted 180° along its long axis. It is a form of hair shaft disorder with increased fragility. The condition is classified into inherited and acquired. Inherited forms may be either isolated or associated with numerous genetic diseases or syndromes (e.g., Menkes disease, Björnstad syndrome, Netherton syndrome, and Bazex-Dupré-Christol syndrome). Moreover, pili torti may be a feature of various ectodermal dysplasias (such as Rapp-Hodgkin syndrome and Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome). Acquired pili torti was described in numerous forms of alopecia (e.g., lichen planopilaris, discoid lupus erythematosus, dissecting cellulitis, folliculitis decalvans, alopecia areata) as well as neoplastic and systemic diseases (such as cutaneous T-cell lymphoma, scalp metastasis of breast cancer, anorexia nervosa, malnutrition, cataracts, and chronic graft-vs.-host disease). The condition may also be induced by several drugs (epidermal growth factor receptor inhibitors, oral retinoids, sodium valproate, and carbamide perhydrate). The diagnosis of pili torti is based on trichoscopic or microscopic examination. As pili torti is a marker of numerous congenital and acquired disorders, in every case, the search for the signs of underlying conditions is recommended.
Collapse
|
11
|
Billi AC, Sarkar MK, Gudjonsson JE. When bugs and drugs conspire: driving acneiform skin toxicity. J Clin Invest 2020; 130:1090-1092. [PMID: 32015232 DOI: 10.1172/jci133787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Therapy with antineoplastic agents that inhibit EGFR and MEK is frequently limited by cutaneous adverse reactions, most commonly acne-like eruptions. In this issue of the JCI, Satoh et al. define a mechanism for acneiform skin toxicity wherein EGFR/MEK inhibitors cooperate with the skin commensal Cutibacterium acnes to induce IL-36γ in keratinocytes via the combined actions of Krüppel-like factor 4 and NF-κB transcription factors at the IL-36γ promoter, resulting in neutrophil recruitment. In addition to elucidating why EGFR/MEK inhibitor-induced rashes are often pustular and folliculocentric, this mechanism provides justification for the long-standing practice of management with antibiotic therapy.
Collapse
|
12
|
EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer 2020; 123:942-954. [PMID: 32601464 PMCID: PMC7493992 DOI: 10.1038/s41416-020-0943-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.
Collapse
|
13
|
Sun Y, Zhou Y, Msuthwana P, Liu J, Liu C, Sello CT, Song Y, Feng Z, Li S, Yang W, Xu Y, Yan X, Li C, Sui Y, Hu J, Sun Y. The role of CTNNB1 and LEF1 in feather follicles development of Anser cygnoides and Anser anser. Genes Genomics 2020; 42:761-771. [PMID: 32449067 DOI: 10.1007/s13258-020-00950-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/12/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway is one of the most extensively studied transcriptional cascades involved in various types of organogenesis including embryonic and postnatal development. Downy feather quantity is primarily affected by follicular development and gene regulations. OBJECTIVE This research was aimed to investigate the role of catenin beta-1(CTNNB1) and lymphoid enhancerbinding factor-1 (LEF1) on feather follicles development at different developmental stages. METHODS Fluorescence quantitative PCR, Western-blot and immunohistochemical methods were used in Anser cygnoides and Anser anser embryos (E12, E13 E18, and E28) and after birth gosling stages (G18, G48, G88) for gene expression analysis. RESULTS CTNNB1 and LEF1 genes were expressed in Anser cygnoides and Anser anser at different embryonic and after-birth gosling developmental stages and the expression levels were significantly different in different stages (p < 0.05). The mRNA expression of CTNNB1 and LEF1 genes reached the highest level at D88 in Anser cygnoides, while the highest expression levels were at D18 and D88 in Anser anser, and the expression levels of CTNNB1 genes at D88 in all embryonic stages were significantly lower than after-birth stages. CTNNB1 and LEF1 protein expression were the highest at E12 and E28 for Anser cygnoides feather follicles development. While at a similar stage for Anser anser, the expression of CTNNB1 and LEF1 protein was the highest at D48 and D18. Protein expression at embryonic stages was in the epidermis (E) and the hair basal plate (P), the expression site for after-birth stages was in the dermal papilla (DP). CONCLUSION Our study illustrated that CTNNB1 and LEF1 has an impact on Anser cygnoides and Anser anser feather follicles growth and development.
Collapse
Affiliation(s)
- Yue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Yuxuan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Petunia Msuthwana
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Jing Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Chang Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Cornelius Tlotliso Sello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Yupu Song
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Ziqiang Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Shengyi Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Wei Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Yunpeng Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Xiaomin Yan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Chuanghang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Yujian Sui
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Jingtao Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China
| | - Yongfeng Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street, No: 2888, Changchun, 130118, People's Republic of China. .,Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, People's Republic of China.
| |
Collapse
|
14
|
Kremer N, Martinez H, Leshem YA, Hodak E, Zer A, Brenner B, Amitay-Laish I. The trichoscopic features of hair shaft anomalies induced by epidermal growth factor receptor inhibitors: A case series. J Am Acad Dermatol 2020; 85:1178-1184. [PMID: 32244022 DOI: 10.1016/j.jaad.2020.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/14/2020] [Accepted: 03/22/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although the clinical hair changes that occur under treatment with epidermal growth factor receptor inhibitors (EGFRIs) are documented, their trichoscopic features have not been reported. OBJECTIVE To evaluate the trichoscopic findings in scalp and facial hair, induced by EGFRI treatment. METHODS Patients treated with EGFRIs at a tertiary oncodermatology clinic in 2015 through 2017 were evaluated for macroscopic and trichoscopic changes. RESULTS The cohort included 23 patients (13 women; median age, 68 years) treated with EGFRIs for an average of 13 months (range, 2-40 months). Macroscopically, 18 patients (78%) had dry, lusterless, coarse, kinky, brittle scalp hair, and 17 (74%) had trichomegaly of the eyebrows/eyelashes. Trichoscopic findings were of hair shaft anomalies including pili torti, affecting scalp hair in 20 patients (87%), eyebrows in 6 (26%), and eyelashes in 8 (50%), and asymmetric hyperpigmented fusiform widening of hair scalp in 3 (13%), eyebrows in 10 (43%), and eyelashes in 4 (25%). Dermoscopic findings of the peri- and interfollicular skin were scale, whitish erythematous structureless areas, and branching vessels. LIMITATIONS Lack of trichoscopic-histologic correlation, lack of baseline examination. CONCLUSION The trichoscopic correlates of the macroscopic hair changes under EFGRI treatment include pili torti, and asymmetric hyperpigmented fusiform widening, with dermoscopic cutaneous manifestations of scale, whitish erythematous structureless areas, and branching vessels.
Collapse
Affiliation(s)
- Noa Kremer
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Helena Martinez
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Anne Leshem
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Zer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Baruch Brenner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Iris Amitay-Laish
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Characterization of Embryonic Skin Transcriptome in Anser cygnoides at Three Feather Follicles Developmental Stages. G3-GENES GENOMES GENETICS 2020; 10:443-454. [PMID: 31792007 PMCID: PMC7003092 DOI: 10.1534/g3.119.400875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.
Collapse
|