1
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
2
|
Vittoria MA, Quinton RJ, Ganem NJ. Whole-genome doubling in tissues and tumors. Trends Genet 2023; 39:954-967. [PMID: 37714734 PMCID: PMC10840902 DOI: 10.1016/j.tig.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD+) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD+ cells.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Ryan J Quinton
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neil J Ganem
- Department of Medicine, Division of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
3
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Lau TY, Poon RY. Whole-Genome Duplication and Genome Instability in Cancer Cells: Double the Trouble. Int J Mol Sci 2023; 24:ijms24043733. [PMID: 36835147 PMCID: PMC9959281 DOI: 10.3390/ijms24043733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Whole-genome duplication (WGD) is one of the most common genomic abnormalities in cancers. WGD can provide a source of redundant genes to buffer the deleterious effect of somatic alterations and facilitate clonal evolution in cancer cells. The extra DNA and centrosome burden after WGD is associated with an elevation of genome instability. Causes of genome instability are multifaceted and occur throughout the cell cycle. Among these are DNA damage caused by the abortive mitosis that initially triggers tetraploidization, replication stress and DNA damage associated with an enlarged genome, and chromosomal instability during the subsequent mitosis in the presence of extra centrosomes and altered spindle morphology. Here, we chronicle the events after WGD, from tetraploidization instigated by abortive mitosis including mitotic slippage and cytokinesis failure to the replication of the tetraploid genome, and finally, to the mitosis in the presence of supernumerary centrosomes. A recurring theme is the ability of some cancer cells to overcome the obstacles in place for preventing WGD. The underlying mechanisms range from the attenuation of the p53-dependent G1 checkpoint to enabling pseudobipolar spindle formation via the clustering of supernumerary centrosomes. These survival tactics and the resulting genome instability confer a subset of polyploid cancer cells proliferative advantage over their diploid counterparts and the development of therapeutic resistance.
Collapse
Affiliation(s)
- Tsz Yin Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Randy Y.C. Poon
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: ; Tel.: +852-2358-8718
| |
Collapse
|
5
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Hazawa M, Amemori S, Nishiyama Y, Iga Y, Iwashima Y, Kobayashi A, Nagatani H, Mizuno M, Takahashi K, Wong RW. A light-switching pyrene probe to detect phase-separated biomolecules. iScience 2021; 24:102865. [PMID: 34386728 PMCID: PMC8346672 DOI: 10.1016/j.isci.2021.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecules may undergo liquid-liquid phase separation (LLPS) to spatiotemporally compartmentalize and regulate diverse biological processes. Because the number of tools to directly probe LLPS is limited (ie. FRAP, FRET, fluorescence microscopy, fluorescence anisotropy, circular dichroism, etc.), the physicochemical traits of phase-separated condensates remain largely elusive. Here, we introduce a light-switching dipyrene probe (Pyr-A) that forms monomers in either hydrophobic or viscous environments, and intramolecular excimers in aqueous solutions. By exploiting their distinct fluorescence emission spectra, we used fluorescent microscopic imaging to study phase-separated condensates formed by in vitro protein droplets and membraneless intracellular organelles (centrosomes). Ratiometric measurement of excimer and monomer fluorescence intensities showed that protein droplets became hydrophobic and viscous as their size increased. Moreover, centrosomes became hydrophobic and viscous during maturation. Our results show that Pyr-A is a valuable tool to characterize LLPS and enhance our understanding of phase separation underlying biological functions.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shogo Amemori
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshio Nishiyama
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Iga
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Iwashima
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohisa Nagatani
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Motohiro Mizuno
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenji Takahashi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Richard W. Wong
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 2021; 590:492-497. [PMID: 33505027 PMCID: PMC7889737 DOI: 10.1038/s41586-020-03133-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
Whole genome doubling (WGD) occurs early in tumorigenesis and generates genetically unstable tetraploid cells that fuel tumor development1,2. Cells that undergo WGD (WGD+) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can subsequently be exploited therapeutically, is unclear. Using sequencing data from ~10,000 primary human cancer samples and essentiality data from ~600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD+ cells are more dependent on spindle assembly checkpoint signaling, DNA replication factors, and proteasome function than WGD– cells. We also identify KIF18A, which encodes for a mitotic kinesin, as being specifically required for the viability of WGD+ cells. While loss of KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD– cells, its loss induces dramatic mitotic errors in WGD+ cells, ultimately impairing cell viability. Collectively, our results reveal new strategies to specifically target WGD+ cancer cells while sparing the normal, non-transformed WGD– cells that comprise human tissue.
Collapse
|
10
|
Pienta KJ, Hammarlund EU, Axelrod R, Brown JS, Amend SR. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol Appl 2020; 13:1626-1634. [PMID: 32952609 PMCID: PMC7484876 DOI: 10.1111/eva.12929] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor-natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly-aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure-without the eradication of the resilient PACCs, cancer will recur in treated patients.
Collapse
Affiliation(s)
- Kenneth J. Pienta
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Emma U. Hammarlund
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDenmark
- Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLundSweden
| | - Robert Axelrod
- Gerald R. Ford School of Public PolicyUniversity of MichiganAnn ArborMIUSA
| | - Joel S. Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical OncologyMoffitt Cancer CenterTampaFLUSA
| | - Sarah R. Amend
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|