1
|
Raveh A, Pen Y, Silberman A, Peretz A, Attali B, Maile L, Davidson S, Brown AD, Kennedy JD, Belinson H. Dual Kv7.2/3-TRPV1 modulators inhibit nociceptor hyperexcitability and alleviate pain without target-related side effects. Pain 2024:00006396-990000000-00714. [PMID: 39324934 DOI: 10.1097/j.pain.0000000000003390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Persistent or chronic pain is the primary reason people seek medical care, yet current therapies are either limited in efficacy or cause intolerable side effects. Diverse mechanisms contribute to the basic phenomena of nociceptor hyperexcitability that initiates and maintains pain. Two prominent players in the modulation of nociceptor hyperexcitability are the transient receptor potential vanilloid type 1 (TRPV1) ligand-gated ion channel and the voltage-gated potassium channel, Kv7.2/3, that reciprocally regulate neuronal excitability. Across many drug development programs targeting either TRPV1 or Kv7.2/3, significant evidence has been accumulated to support these as highly relevant targets; however, side effects that are poorly separated from efficacy have limited the successful clinical translation of numerous Kv7.2/3 and TRPV1 drug development programs. We report here the pharmacological profile of 3 structurally related small molecule analogues that demonstrate a novel mechanism of action (MOA) of dual modulation of Kv7.2/3 and TRPV1. Specifically, these compounds simultaneously activate Kv7.2/3 and enable unexpected specific and potent inhibition of TRPV1. This in vitro potency translated to significant analgesia in vivo in several animal models of acute and chronic pain. Importantly, this specific MOA is not associated with any previously described Kv7.2/3 or TRPV1 class-specific side effects. We suggest that the therapeutic potential of this MOA is derived from the selective and specific targeting of a subpopulation of nociceptors found in rodents and humans. This efficacy and safety profile supports the advancement of dual TRPV1-Kv7.2/3 modulating compounds into preclinical and clinical development for the treatment of chronic pain.
Collapse
Affiliation(s)
- Adi Raveh
- Bsense Bio Therapeutics Ltd., Ness Ziona, Israel
| | - Yefim Pen
- Bsense Bio Therapeutics Ltd., Ness Ziona, Israel
| | | | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Laura Maile
- Department of Anesthesiology and Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Steve Davidson
- Department of Anesthesiology and Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alan D Brown
- AD Brown Medchem Consulting Ltd., Deal, Kent, UK
| | | | | |
Collapse
|
2
|
Seese MH, Steelman AJ, Erdman JW. The Impact of LPS on Inflammatory Responses in Alpha-Tocopherol Deficient Mice. Curr Dev Nutr 2024; 8:104416. [PMID: 39185446 PMCID: PMC11342875 DOI: 10.1016/j.cdnut.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Background To facilitate the evaluation of vitamin E (α-tocopherol, αT) status on health outcomes, the αT transfer protein knockout (Ttpa -/- ) mouse model has proved to be an effective tool for lowering αT body stores. Our previous study showed a further reduction in grip strength in LPS-treated Ttpa -/- compared with wild-type (WT) mice during a 9-wk αT-deficient diet feeding period but did not find a difference in LPS-induced inflammatory response markers. Further optimization of this mouse model is warranted to determine the appropriate depletion period and biomarkers endpoints. Objectives The objective was to examine whether 12 wk of an αT-deficient diet altered the inflammatory response 4 and/or 24 h after LPS injection in WT and Ttpa -/- mice. Methods WT and Ttpa -/- weanling littermates were fed an αT-deficient diet ad libitum for 12 wk. Mice were then injected with LPS (10 μg/mouse) or saline (control) intraperitoneally and killed 4 (Study 1) or 24 h (Study 2) later. Concentrations of αT in tissues were measured via HPLC. Grip strength and burrowing were evaluated to assess sickness behaviors before/after LPS injection. Expression of genes related to inflammatory responses was examined via RT-PCR. Results αT concentrations in the brain, liver, and serum of Ttpa -/- mice were notably lower or undetectable compared with WT mice in both studies. Hepatic αT concentrations were further decreased 24 h after LPS injection. Grip strength was reduced at 4 h post-injection but partially recovered to baseline values 24 h after LPS injection. The expression of genes related to inflammatory responses were altered by LPS. However, neither measure of sickness behavior nor gene expression markers differed between genotypes. Conclusions A 4-h LPS challenge reduced grip strength and resulted in an inflammatory response. At 24 h post-dosing, there was a partial, transitory recovery response in both Ttpa -/- and WT mice.
Collapse
Affiliation(s)
- Megumi H Seese
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- USDA-ARS Children's Nutrition Research Center, Houston, TX, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Renigunta V, Xhaferri N, Shaikh IG, Schlegel J, Bisen R, Sanvido I, Kalpachidou T, Kummer K, Oliver D, Leitner MG, Lindner M. A versatile functional interaction between electrically silent K V subunits and K V7 potassium channels. Cell Mol Life Sci 2024; 81:301. [PMID: 39003683 PMCID: PMC11335225 DOI: 10.1007/s00018-024-05312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.
Collapse
Affiliation(s)
- Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Nermina Xhaferri
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Imran Gousebasha Shaikh
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Jonathan Schlegel
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Rajeshwari Bisen
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ilaria Sanvido
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Michael G Leitner
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Lindner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany.
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Ophthalmology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
4
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Sharif-Naeini R, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Robert W Gereau Iv, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. SCIENCE ADVANCES 2024; 10:eadj9173. [PMID: 38905344 DOI: 10.1126/sciadv.adj9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Lisa A McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zachariah Bertels
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John S Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Allie J Widman
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Richard A Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Reza Sharif-Naeini
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert W Gereau Iv
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Donnelly CG, Finno CJ. Vitamin E depletion is associated with subclinical axonal degeneration in juvenile horses. Equine Vet J 2023; 55:884-890. [PMID: 36516303 PMCID: PMC10264549 DOI: 10.1111/evj.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Phosphorylated neurofilament heavy, a marker of neuroaxonal damage, is increased in horses with equine neuroaxonal dystrophy. However, the temporal dynamics of this biomarker during the post-natal risk period are not understood. OBJECTIVE To measure serum and cerebrospinal fluid phosphorylated neurofilament heavy concentrations in juvenile foals across the post-natal window of susceptibility for equine neuroaxonal dystrophy. STUDY DESIGN Case-control in vivo experimental study. METHODS Concentrations of phosphorylated neurofilament heavy were measured using frozen serum and cerebrospinal fluid collected from 13 foals raised in a vitamin E deficient environment from 1 to 6 months of age. Four of these foals were produced by equine neuroaxonal dystrophy-affected dams, developed clinical signs consistent with equine neuroaxonal dystrophy and had a diagnosis confirmed by histopathology. The remaining nine foals, produced by healthy mares, were vitamin E depleted and remained clinically healthy. An additional cohort of foals, produced by healthy mares, were supplemented with vitamin E (α-tocopherol; α-TOH) from birth and sampled similarly. RESULTS Serum α-TOH concentrations were significantly higher in vitamin E supplemented healthy foals. Serum phosphorylated neurofilament heavy concentrations did not differ significantly between groups at any time point. Cerebrospinal fluid phosphorylated neurofilament heavy concentrations increased with age in healthy vitamin E depleted foals (p < 0.001); an effect that was not observed in healthy vitamin E supplemented foals. MAIN LIMITATIONS A genetically susceptible cohort supplemented with vitamin E was not available for comparison. CONCLUSION We demonstrate that vitamin E depletion may elevate cerebrospinal fluid phosphorylated neurofilament heavy in otherwise healthy juvenile foals by 6 months of age. We highlight an important cofactor to consider when interpreting cerebrospinal fluid phosphorylated neurofilament heavy concentrations in juvenile horses.
Collapse
Affiliation(s)
- Callum G. Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
6
|
Hashida M, Ranard KM, Steelman AJ, Erdman JW. α-Tocopherol Transfer Protein-Null Mice with Very Low α-Tocopherol Status Do Not Have an Enhanced Lipopolysaccharide-Induced Acute Inflammatory Response. Curr Dev Nutr 2023; 7:100017. [PMID: 37181122 PMCID: PMC10100938 DOI: 10.1016/j.cdnut.2022.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background The α-tocopherol transfer protein-null (Ttpa-/-) mouse model is a valuable tool for studying the molecular and functional consequences of vitamin E (α-tocopherol, αT) deficiency. Because αT has been associated with reduced oxidative stress and improved immune function, we hypothesized that depleted αT concentration would exacerbate LPS-induced acute inflammatory response in the brain and heart of Ttpa-/- mice fed a vitamin E deficient (VED) diet. Objectives The objective was to investigate how extremely low αT status, followed by exposure to LPS, altered the acute inflammatory response to LPS in Ttpa-/- and wild-type (Ttpa+/+) mice. Methods Three-week-old male Ttpa+/+ and Ttpa-/- littermates (n = 36/genotype) ingested a VED diet ad libitum for 4 wk. At week 7, mice received an intraperitoneal LPS (1 or 10 μg/mouse) or saline (control) injection and were killed 4 h postinjection. Brain and heart IL-6 protein concentrations and tissue and serum αT concentrations were measured via ELISA and HPLC with photodiode array detection, respectively. Hippocampal Il-6, Tnf, and Gpx1 gene expression were measured via reverse transcriptase-quantitative polymerase chain reaction, and blood immune cell profiles were measured via a hematology analyzer. Results αT accumulation in analyzed tissues and serum of Ttpa-/- mice was substantially lower than Ttpa+/+ mice. Circulating white blood cell concentration, particularly lymphocytes, were lower in all LPS groups compared with controls (P < 0.01). The 10 μg LPS groups had elevated IL-6 in the cerebellum and heart compared with controls, confirming an acute inflammatory response (P < 0.01). Hippocampal and heart Il-6 gene expression in the LPS-treated Ttpa-/- mice was upregulated in a dose-dependent manner (P < 0.05). Conclusions The 10 μg LPS dose enhanced inflammatory markers in the brain, heart, and serum in each genotype but the lower αT status in Ttpa-/- mice did not further impact the acute immune responses.
Collapse
Affiliation(s)
- Megumi Hashida
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katherine M. Ranard
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Keeler AB, Van Deusen AL, Gadani IC, Williams CM, Goggin SM, Hirt AK, Vradenburgh SA, Fread KI, Puleo EA, Jin L, Calhan OY, Deppmann CD, Zunder ER. A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry. Nat Neurosci 2022; 25:1543-1558. [PMID: 36303068 PMCID: PMC10691656 DOI: 10.1038/s41593-022-01181-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein-mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Collapse
Affiliation(s)
- Austin B Keeler
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Amy L Van Deusen
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Irene C Gadani
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ashley K Hirt
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Shayla A Vradenburgh
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Emily A Puleo
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lucy Jin
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - O Yipkin Calhan
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Christopher D Deppmann
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, Charlottesville, VA, USA.
| | - Eli R Zunder
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Finno CJ, Chen Y, Park S, Lee JH, Perez-Flores MC, Choi J, Yamoah EN. Cisplatin Neurotoxicity Targets Specific Subpopulations and K + Channels in Tyrosine-Hydroxylase Positive Dorsal Root Ganglia Neurons. Front Cell Neurosci 2022; 16:853035. [PMID: 35586548 PMCID: PMC9108181 DOI: 10.3389/fncel.2022.853035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) in mice, determined using single-cell transcriptome and electrophysiological analyses. TH+ DRGNs regulate innocuous mechanical sensation through C-low threshold mechanoreceptors. A differential assessment of wild-type and vitamin E deficient TH+ DRGNs revealed heterogeneity and specific functional phenotypes. The TH+ DRGNs comprise; fast-adapting eliciting one action potential (AP; 1-AP), moderately-adapting (≥2-APs), in responses to square-pulse current injection, and spontaneously active (SA). Cisplatin increased the input resistance and AP frequency but reduced the temporal coding feature of 1-AP and ≥2-APs neurons. By contrast, cisplatin has no measurable effect on the SA neurons. Vitamin E reduced the cisplatin-mediated increased excitability but did not improve the TH+ neuron temporal coding properties. Cisplatin mediates its effect by targeting outward K+ current, likely carried through K2P18.1 (Kcnk18), discovered through the differential transcriptome studies and heterologous expression. Studies show a potential new cellular target for chemotherapy-induced peripheral neuropathy and implicate the possible neuroprotective effects of vitamin E in cisplatin chemotherapy.
Collapse
Affiliation(s)
- Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Reno, Reno, NV, United States
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Reno, Reno, NV, United States
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Reno, Reno, NV, United States
| | | | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Reno, Reno, NV, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Reno, Reno, NV, United States
| |
Collapse
|
9
|
Perez-Flores MC, Verschooten E, Lee JH, Kim HJ, Joris PX, Yamoah EN. Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity. eLife 2022; 11:74948. [PMID: 35266451 PMCID: PMC8942473 DOI: 10.7554/elife.74948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Mechanosensation – by which mechanical stimuli are converted into a neuronal signal – is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN) serve as obligatory bottlenecks for sounds to engage the brain. Like other sensory neurons, auditory neurons use the canonical pathway for neurotransmission and millisecond-duration action potentials (APs). How the auditory system utilizes the relatively slow transmission mechanisms to achieve ultrafast speed, and high audio-frequency hearing remains an enigma. Here, we address this paradox and report that the mouse, and chinchilla, AN are mechanically sensitive, and minute mechanical displacement profoundly affects its response properties. Sound-mimicking sinusoidal mechanical and electrical current stimuli affect phase-locked responses. In a phase-dependent manner, the two stimuli can also evoke suppressive responses. We propose that mechanical sensitivity interacts with synaptic responses to shape responses in the AN, including frequency tuning and temporal phase locking. Combining neurotransmission and mechanical sensation to control spike patterns gives the mammalian AN a secondary receptor role, an emerging theme in primary neuronal functions.
Collapse
Affiliation(s)
| | - Eric Verschooten
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | | | | | - Philip X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
10
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Yoshida S, Funato H. Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience 2021; 24:102721. [PMID: 34235413 PMCID: PMC8250458 DOI: 10.1016/j.isci.2021.102721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The infant-caregiver relationship involves physical contact for feeding, moving, and other cares, and such contact also encourages the infant to form an attachment, an emotional bond with the caregivers. Physical contact always accompanies somatosensory perception, which is detected by mechanosensory neurons and processed in the brain. Physical contact triggers sensorimotor reflexes such as Transport Response in rodent infants, and calm human infants while being carried. Tactile sensation and deep pressure in physical interactions, such as hugging, can function as emotional communication between infant and caregiver, which can alter the behavior and mood of both the infant and caregiver. This review summarizes the findings related to physical contact between the infant and the caregiver in terms of pleasant, noxious, and neutral somatosensation and discusses how somatosensory perceptions foster a feeling of safety that is important for infant's psychosocial development.
Collapse
Affiliation(s)
- Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
12
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
RedEfish: Generation of the Polycistronic mScarlet: GSG-T2A: Ttpa Zebrafish Line. Antioxidants (Basel) 2021; 10:antiox10060965. [PMID: 34208660 PMCID: PMC8235169 DOI: 10.3390/antiox10060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The vitamin E regulatory protein, the alpha-tocopherol transfer protein (Ttpa), is necessary for zebrafish embryo development. To evaluate zebrafish embryo Ttpa function, we generated a fluorescent-tagged zebrafish transgenic line using CRISPR-Cas9 technology. One-cell stage embryos (from Casper (colorless) zebrafish adults) were injected the mScarlet coding sequence in combination with cas9 protein complexed to single guide RNA molecule targeting 5′ of the ttpa genomic region. Embryos were genotyped for proper insertion of the mScarlet coding sequence, raised to adulthood and successively in-crossed to produce the homozygote RedEfish (mScarlet: GSG-T2A: Ttpa). RedEfish were characterized by in vivo fluorescence detection at 1, 7 and 14 days post-fertilization (dpf). Fluorescent color was detectable in RedEfish embryos at 1 dpf; it was distributed throughout the developing brain, posterior tailbud and yolk sac. At 7 dpf, the RedEfish was identifiable by fluorescence in olfactory pits, gill arches, pectoral fins, posterior tail region and residual yolk sac. Subsequently (14 dpf), the mScarlet protein was found in olfactory pits, distributed throughout the digestive tract, along the lateral line and especially in caudal vertebrae. No adverse morphological outcomes or developmental delays were observed. The RedEfish will be a powerful model to study Ttpa function during embryo development.
Collapse
|
14
|
Tomura M, Ikebuchi R, Moriya T, Kusumoto Y. Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 2021; 355:109127. [PMID: 33722643 DOI: 10.1016/j.jneumeth.2021.109127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Cell migration and cell proliferation are the basic principles that make up a living organism, and both biologically and medically. In order to understand living organism and biological phenomena, it is essential to track the migration, proliferation, and fate of cells in living cells and animals and to clarify the properties and molecular expression of cells. Recent developments in novel fluorescent proteins have made it possible to observe cell migration and proliferation as the cell cycle at the single-cell level in living individuals and tissues. Here, we introduce cell cycle visualization of living cells and animals by Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator) system and in situ cell labeling of cells and tracking cell migration by photoactivatable and photoconvertible proteins. In addition, we will present our established methods as an example of combines above tools with single-cell molecular expression analysis to reveal the fate of migrating cells at single cell level.
Collapse
Affiliation(s)
- Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
15
|
Ranard KM, Kuchan MJ, Juraska JM, Erdman JW. Natural and Synthetic α-Tocopherol Modulate the Neuroinflammatory Response in the Spinal Cord of Adult Ttpa-null Mice. Curr Dev Nutr 2021; 5:nzab008. [PMID: 33733036 PMCID: PMC7947595 DOI: 10.1093/cdn/nzab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin E (α-tocopherol, α-T) deficiency causes neurological pathologies. α-T supplementation improves outcomes, but the relative bioactivities of dietary natural and synthetic α-T in neural tissues are unknown. OBJECTIVE The aim was to assess the effects of dietary α-T source and dose on oxidative stress and myelination in adult α-tocopherol transfer protein-null (Ttpa- / - ) mouse cerebellum and spinal cord. METHODS Three-week-old male Ttpa- / - mice (n = 56) were fed 1 of 4 AIN-93G-based diets for 37 wk: vitamin E-deficient (VED; below α-T limit of detection); natural α-T, 600 mg/kg diet (NAT); synthetic α-T, 816 mg/kg diet (SYN); or high synthetic α-T, 1200 mg/kg diet (HSYN). Male Ttpa+/+ littermates (n = 14) fed AIN-93G (75 mg synthetic α-T/kg diet; CON) served as controls. At 40 wk of age, total and stereoisomer α-T concentrations and oxidative stress markers were determined (n = 7/group). Cerebellar Purkinje neuron morphology and white matter areas in cerebellum and spinal cord were assessed in a second subset of animals (n = 7/group). RESULTS Cerebral cortex α-T concentrations were undetectable in Ttpa- / - mice fed the VED diet. α-T concentrations were increased in NAT (4.6 ± 0.3 nmol/g), SYN (8.0 ± 0.7 nmol/g), and HSYN (8.5 ± 0.3 nmol/g) mice, but were significantly lower than in Ttpa+/+ mice fed CON (27.8 ± 1.9 nmol/g) (P < 0.001). 2R stereoisomers constituted the majority of α-T in brains of Ttpa+/+ mice (91%) and Ttpa- / - mice fed NAT (100%), but were substantially lower in the SYN and HSYN groups (∼53%). Neuroinflammatory genes were increased in the spinal cord, but not cerebellum, of VED-fed animals; NAT, SYN, and HSYN normalized their expression. Cerebellar Purkinje neuron atrophy and myelin pathologies were not visible in Ttpa- / - mice. CONCLUSIONS Natural and synthetic α-T supplementation normalized neuroinflammatory markers in neural tissues of 10-mo-old Ttpa- / - mice. α-T prevents tissue-specific molecular abnormalities, which may prevent severe morphological changes during late adulthood.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | - Janice M Juraska
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
16
|
Fargeot G, Echaniz-Laguna A. Sensory neuronopathies: new genes, new antibodies and new concepts. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-325536. [PMID: 33563795 DOI: 10.1136/jnnp-2020-325536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Degeneration of dorsal root ganglia (DRG) and its central and peripheral projections provokes sensory neuronopathy (SN), a rare disorder with multiple genetic and acquired causes. Clinically, patients with SN usually present with proprioceptive ataxia, patchy and asymmetric sensory abnormalities, widespread areflexia and no weakness. Classic causes of SN include cancer, Sjögren's syndrome, vitamin deficiency, chemotherapy, mitochondrial disorders and Friedreich ataxia. More recently, new genetic and dysimmune disorders associated with SN have been described, including RFC1 gene-linked cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) and anti-FGFR3 antibodies. In this review, we detail the pathophysiology of DRG degeneration, and the genetic and acquired causes of SN, with a special focus on the recently described CANVAS and anti-FGFR3 antibodies. We also propose a user-friendly and easily implemented SN diagnostic strategy.
Collapse
Affiliation(s)
- Guillaume Fargeot
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, France
- INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Vitamin E Deficiency Disrupts Gene Expression Networks during Zebrafish Development. Nutrients 2021; 13:nu13020468. [PMID: 33573233 PMCID: PMC7912379 DOI: 10.3390/nu13020468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Vitamin E (VitE) is essential for vertebrate embryogenesis, but the mechanisms involved remain unknown. To study embryonic development, we fed zebrafish adults (>55 days) either VitE sufficient (E+) or deficient (E–) diets for >80 days, then the fish were spawned to generate E+ and E– embryos. To evaluate the transcriptional basis of the metabolic and phenotypic outcomes, E+ and E– embryos at 12, 18 and 24 h post-fertilization (hpf) were subjected to gene expression profiling by RNASeq. Hierarchical clustering, over-representation analyses and gene set enrichment analyses were performed with differentially expressed genes. E– embryos experienced overall disruption to gene expression associated with gene transcription, carbohydrate and energy metabolism, intracellular signaling and the formation of embryonic structures. mTOR was apparently a major controller of these changes. Thus, embryonic VitE deficiency results in genetic and transcriptional dysregulation as early as 12 hpf, leading to metabolic dysfunction and ultimately lethal outcomes.
Collapse
|