1
|
Gaggio B, Jan A, Muller M, Salonikidou B, Bakhit B, Hellenbrand M, Di Martino G, Yildiz B, MacManus-Driscoll JL. Sodium-Controlled Interfacial Resistive Switching in Thin Film Niobium Oxide for Neuromorphic Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5764-5774. [PMID: 38883429 PMCID: PMC11170940 DOI: 10.1021/acs.chemmater.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A double layer 2-terminal device is employed to show Na-controlled interfacial resistive switching and neuromorphic behavior. The bilayer is based on interfacing biocompatible NaNbO3 and Nb2O5, which allows the reversible uptake of Na+ in the Nb2O5 layer. We demonstrate voltage-controlled interfacial barrier tuning via Na+ transfer, enabling conductivity modulation and spike-amplitude- and spike-timing-dependent plasticity. The neuromorphic behavior controlled by Na+ ion dynamics in biocompatible materials shows potential for future low-power sensing electronics and smart wearables with local processing.
Collapse
Affiliation(s)
- Benedetta Gaggio
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Atif Jan
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Moritz Muller
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Barbara Salonikidou
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Babak Bakhit
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
- Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA, U.K
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - Markus Hellenbrand
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Giuliana Di Martino
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
| |
Collapse
|
2
|
Zheng Y, Chen K, Wang L, Chen S, Li C. Pillaring Electronic Nano-Wires to Slice T-Nb 2O 5 Laminated Particles for Durable Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308727. [PMID: 38229134 DOI: 10.1002/smll.202308727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/24/2023] [Indexed: 01/18/2024]
Abstract
T-Nb2O5 characterized by the pronounced intercalation pseudocapacitance effect, is regarded as a promising and alternative anode for fast-charging Li-ion batteries. However, its electrochemical kinetics are still hindered by the absence of sufficient and homogenous conductive wiring inside active microparticles. Herein, an in situ pillaring strategy of electronic nano-wires is proposed to slice T-Nb2O5 laminated particles for the development of durable and fast-charging anodes for Li-ion batteries. A micro-level layered structure consisting of nano-carbon-inserted T-Nb2O5 composite flakes is designed and enabled by successive ion exchange, slice exfoliation, in situ polymerization, and carbonization processes. The pillared carbon interlayer (derived from polyaniline) can serve as in-built conductive wires to promote and homogenize electron transfer inside the micro-level particles. The porous structure (formed by the self-assembly of exfoliated flakes) contributes to the improved electrolyte immersion and enhanced lithium migration. Benefitting from the kinetically favorable effects, the modified T-Nb2O5 anode achieves the high-rate capability (108.4 mAh g-1 at 10 A g-1) and ultralong cycling durability (138 mAh g-1 at 1.0 A g-1 after 8000 cycles, with an average capacity decaying rate as small as 0.043‰). This work provides an effective strategy of electron wire pillaring with the slicing effect for laminated electrode materials with high tap density.
Collapse
Affiliation(s)
- Yongjian Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Keyi Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Lei Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chilin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| |
Collapse
|
3
|
Dong W, Liu Z, Xie M, Chen Y, Ma W, Liang S, Bai Y, Huang F. Observation of High-Capacity Monoclinic B-Nb 2O 5 with Ultrafast Lithium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311424. [PMID: 38325426 DOI: 10.1002/adma.202311424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Apart from Li4Ti5O12, there are few anode substitutes that can be used in commercial high-power lithium-ion batteries. Orthorhombic T-Nb2O5 has recently been proven to be another substitute anode. However, monoclinic B-Nb2O5 of same chemistry is essentially inert for lithium storage, but the underlying reasons are unclear. In order to activate the "inert" B-Nb2O5, herein, nanoporous pseudocrystals to achieve a larger specific capacity of 243 mAh g-1 than Li4Ti5O12 (theoretical capacity: 175 mAh g-1) are proposed. These pseudocrystals are rationally synthesized via a "shape-keep" topological microcorrosion process from LiNbO3 precursor. Compared to pristine B-Nb2O5, experimental investigations reveal that B-Nb2O5- x delivers ≈3000 times higher electronic conductivity and tenfold enhanced Li+ diffusion coefficient. An ≈30% reduction of energy barrier for Li-ion migration is also confirmed by the theoretical calculations. The nanoporous B-Nb2O5- x delivers unique ion/electron transport channels to proliferate the reversible and deeper lithiation, which activate the "inert" B-Nb2O5. The capacitive-like behavior is observed to endow B-Nb2O5- x ultrafast lithium storage ability, harvesting 136 mAh g-1 at 100 C and 72 mAh g-1 even at 250 C, superior to Li4Ti5O12. Pouch-type full cells exhibit the energy density of ≈251 Wh kg-1 and ultrahigh power density up to ≈35 kW kg-1.
Collapse
Affiliation(s)
- Wujie Dong
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zichao Liu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Miao Xie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| | - Wenqin Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Liang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuzhou Bai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Wu Z, Liang G, Kong Pang W, Zou J, Zhang W, Chen L, Ji X, Didier C, Peterson VK, Segre CU, Johannessen B, Guo Z. Structural Distortion in the Wadsley-Roth Niobium Molybdenum Oxide Phase Triggering Extraordinarily Stable Battery Performance. Angew Chem Int Ed Engl 2024; 63:e202317941. [PMID: 38197798 DOI: 10.1002/anie.202317941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.
Collapse
Affiliation(s)
- Zhibin Wu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gemeng Liang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wei Kong Pang
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jinshuo Zou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wenchao Zhang
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Libao Chen
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Christophe Didier
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
| | - Vanessa K Peterson
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
| | - Carlo U Segre
- Department of Physics and Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Bernt Johannessen
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Superconducting & Electronic Materials, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Pang R, Wang Z, Li J, Chen K. Polymorphs of Nb 2O 5 Compound and Their Electrical Energy Storage Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6956. [PMID: 37959554 PMCID: PMC10647839 DOI: 10.3390/ma16216956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Niobium pentoxide (Nb2O5), as an important dielectric and semiconductor material, has numerous crystal polymorphs, higher chemical stability than water and oxygen, and a higher melt point than most metal oxides. Nb2O5 materials have been extensively studied in electrochemistry, lithium batteries, catalysts, ionic liquid gating, and microelectronics. Nb2O5 polymorphs provide a model system for studying structure-property relationships. For example, the T-Nb2O5 polymorph has two-dimensional layers with very low steric hindrance, allowing for rapid Li-ion migration. With the ever-increasing energy crisis, the excellent electrical properties of Nb2O5 polymorphs have made them a research hotspot for potential applications in lithium-ion batteries (LIBs) and supercapacitors (SCs). The basic properties, crystal structures, synthesis methods, and applications of Nb2O5 polymorphs are reviewed in this article. Future research directions related to this material are also briefly discussed.
Collapse
Affiliation(s)
- Rui Pang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China;
| | - Zhiqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China;
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China;
| | - Kunfeng Chen
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China;
| |
Collapse
|
6
|
Zheng J, Xia R, Sun C, Yaqoob N, Qiu Q, Zhong L, Li Y, Kaghazchi P, Zhao K, Elshof JET, Huijben M. Fast and Durable Lithium Storage Enabled by Tuning Entropy in Wadsley-Roth Phase Titanium Niobium Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301967. [PMID: 37029454 DOI: 10.1002/smll.202301967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Wadsley-Roth phase titanium niobium oxides have received considerable interest as anodes for lithium ion batteries. However, the volume expansion and sluggish ion/electron transport kinetics retard its application in grid scale. Here, fast and durable lithium storage in entropy-stabilized Fe0.4 Ti1.6 Nb10 O28.8 (FTNO) is enabled by tuning entropy via Fe substitution. By increasing the entropy, a reduction of the calcination temperature to form a phase pure material is achieved, leading to a reduced grain size and, therefore, a shortening of Li+ pathway along the diffusion channels. Furthermore, in situ X-ray diffraction reveals that the increased entropy leads to the decreased expansion along a-axis, which stabilizes the lithium intercalation channel. Density functional theory modeling indicates the origin to be the more stable FeO bond as compared to TiO bond. As a result, the rate performance is significantly enhanced exhibiting a reversible capacity of 73.7 mAh g-1 at 50 C for FTNO as compared to 37.9 mAh g-1 for its TNO counterpart. Besides, durable cycling is achieved by FTNO, which delivers a discharge capacity of 130.0 mAh g-1 after 6000 cycles at 10 C. Finally, the potential impact for practical application of FTNO anodes has been demonstrated by successfully constructing fast charging and stable LiFePO4 ‖FTNO full cells.
Collapse
Affiliation(s)
- Jie Zheng
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
| | - Rui Xia
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
| | - Congli Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Najma Yaqoob
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425, Jülich, Germany
| | - Qianyuan Qiu
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, Aalto, FI-00076, Finland
| | - Liping Zhong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Sion, 1951, Switzerland
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, Aalto, FI-00076, Finland
| | - Payam Kaghazchi
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425, Jülich, Germany
| | - Kangning Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Sion, 1951, Switzerland
| | - Johan E Ten Elshof
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
| | - Mark Huijben
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500AE, The Netherlands
| |
Collapse
|
7
|
Dong W, Zhao Y, Cai M, Dong C, Ma W, Pan J, Lv Z, Dong H, Dong Y, Tang Y, Huang F. Nanoscale Borate Coating Network Stabilized Iron Oxide Anode for High-Energy-Density Bipolar Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207074. [PMID: 36670067 DOI: 10.1002/smll.202207074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
High-capacity metal oxides based on non-toxic earth-abundant elements offer unique opportunities as advanced anodes for lithium-ion batteries (LIBs). But they often suffer from large volumetric expansion, particle pulverization, extensive side reactions, and fast degradations during cycling. Here, an easy synthesis method is reported to construct amorphous borate coating network, which stabilizes conversion-type iron oxide anode for the high-energy-density semi-solid-state bipolar LIBs. The nano-borate coated iron oxide anode has high tap density (1.6 g cm-3 ), high capacity (710 mAh g-1 between 0.5 - 3.0 V, vs Li/Li+ ), good rate performance (200 mAh g-1 at 50 C), and excellent cycling stability (≈100% capacity resention over 1,000 cycles at 5 A g-1 ). When paired with high-voltage cathode LiCoO2 , it enables Cu current collector-free pouch-type classic and bipolar full cells with high voltage (7.6 V with two stack layers), achieving high energy density (≈350 Wh kg-1 ), outstanding power density (≈6,700 W kg-1 ), and extended cycle life (75% capacity retention after 2,000 cycles at 2 C), superior to the state-of-the-art high-power LIBs using Li4 Ti5 O12 anode. The design and methodology of the nanoscale polyanion-like coating can be applied to other metal oxides electrode materials, as well as other electrochemical materials and devices.
Collapse
Affiliation(s)
- Wujie Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yantao Zhao
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingzhi Cai
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chenlong Dong
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenqin Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jun Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhuoran Lv
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hang Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Yanhao Dong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yufeng Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
He SA, Liu Q, Luo W, Cui Z, Zou R. Constructing a Micrometer-Sized Structure through an Initial Electrochemical Process for Ultrahigh-Performance Li + Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35522-35533. [PMID: 35882432 DOI: 10.1021/acsami.2c06818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orthorhombic niobium pentoxide (T-Nb2O5) is a promising anode to fulfill the requirements for high-rate Li-ion batteries (LIBs). However, its low electric conductivity and indistinct electrochemical mechanism hinder further applications. Herein, we develop a novel method to obtain a micrometer-sized layer structure of S-doped Nb2O5 on an S-doped graphene (SG) surface (the composite is denoted S-Nb2O5/SG) after the initial cycle, which we call "in situ electrochemically induced aggregation". In situ and ex situ characterizations and theoretical calculations were carried out to reveal the aggregation process and Li+ storage process. The unique merits of the composite with a micrometer-sized layer structure increased the reaction degree, structural stability, and electrochemical kinetics. As a result, the electrode exhibited a large capacity (∼598 mAh g-1 at 0.1 A g-1), outstanding cycling stability (∼313 mAh g-1 at 5 A g-1 and remains at ∼313 mAh g-1 after 1000 cycles), and a high Coulombic efficiency and has a high fast-charging performance and excellent cycling stability.
Collapse
Affiliation(s)
- Shu-Ang He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qian Liu
- Department of Physics, Donghua University, Shanghai 201620, People's Republic of China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | | | | |
Collapse
|
9
|
Li T, Liu K, Nam G, Kim MG, Ding Y, Zhao B, Luo Z, Wang Z, Zhang W, Zhao C, Wang JH, Song Y, Liu M. A Nonstoichiometric Niobium Oxide/Graphite Composite for Fast-Charge Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200972. [PMID: 35618443 DOI: 10.1002/smll.202200972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Electrification of transportation has spurred the development of fast-charge energy storage devices. High-power lithium-ion batteries require electrode materials that can store lithium quickly and reversibly. Herein, the design and construction of a Nb2 O5-δ /graphite composite electrode that demonstrates remarkable rate capability and durability are reported. The presence of graphite enables the formation of a dominant Nb12 O29 phase and a minor T-Nb2 O5 phase. The high rate capability is attributed to the enhanced electronic conductivity and lower energy barriers for fast lithium diffusion in both Nb12 O29 and T-Nb2 O5 , as unraveled by density functional theory calculations. The excellent durability or long cycling life is originated from the coherent redox behavior of Nb ions and high reversibility of lithium intercalation/deintercalation, as revealed by operando X-ray absorption spectroscopy analysis. When tested in a half-cell at high cycling rates, the composite electrode delivers a specific capability of 120 mAh g-1 at 80 C and retains over 150 mAh g-1 after 2000 cycles at 30 C, implying that it is a highly promising anode material for fast-charging lithium-ion batteries.
Collapse
Affiliation(s)
- Tongtong Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Kuanting Liu
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4 Ting-Zhou Road, Taipei, 11677, Taiwan, R.O.C
| | - Gyutae Nam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Bote Zhao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zheyu Luo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Zirui Wang
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Weilin Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4 Ting-Zhou Road, Taipei, 11677, Taiwan, R.O.C
| | - Yanyan Song
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
10
|
Yang P, Fan Y, Hu K, Jiang L, Tan L, Wang Z, Li A, Yang S, Hu Y, Gu H. Fast, Sensitive, and Highly Selective Room-Temperature Hydrogen Sensing of Defect-Rich Orthorhombic Nb 2O 5-x Nanobelts with an Abnormal p-Type Sensor Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25937-25948. [PMID: 35618679 DOI: 10.1021/acsami.2c05786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The research and development of low-power-consumption and room-temperature hydrogen sensors are of great significance for the safe application of hydrogen energy. Herein, orthorhombic Nb2O5-x nanobelts are prepared through a combined procedure of hydrothermal, ion exchange, and annealing treatment in Ar. The topological transformation process results in the formation of abundant surface defects including chemical defects such as Nb4+, oxygen vacancies, and disordered microregions, which lead to the abnormal p-type conducting and hydrogen sensing behavior. Moreover, the orthorhombic Nb2O5-x nanobelts exhibit fast and sensitive room-temperature hydrogen sensing performance, which shows greater advancement than the monoclinic, tetragonal, and hexagonal Nb2O5 one-dimensional (1D) nanostructures. The response time and lowest limit of detection of the as-fabricated room-temperature sensor decrease to 28 s and 3.5 ppm, respectively. The sensor also exhibits a highly selective hydrogen response against CO, CH4, ethanol, H2S, and NH3. The hydrogen response of the Nb2O5-x nanobelts can be attributed to the redox reaction between hydrogen and preadsorbed oxygens. The defective surface structure and the prolonged dimension of the nanobelts give rise to the highly reactive surface and the suppression of the negative nanojunction effect, which greatly improves the sensing performance. The orthorhombic lattice structure can also promote gas adsorption and diffusion behavior due to its specific catalytic and pathway effect. The results of this work can be helpful for the rational design and defect engineering of the Nb2O5-based 1D nanostructures for room-temperature hydrogen sensing applications.
Collapse
Affiliation(s)
- Piaoyun Yang
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Yijing Fan
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Keyang Hu
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Lei Jiang
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Lun Tan
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zhao Wang
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Ang Li
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shulin Yang
- School of Physics and Electronic Information, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yongming Hu
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| | - Haoshuang Gu
- Hubei Engineering Research Center for Safety Detection and Control of Hydrogen Energy - Hubei Key Laboratory of Ferro- & Piezo-electric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
11
|
Yang Y, Zhao J. Wadsley-Roth Crystallographic Shear Structure Niobium-Based Oxides: Promising Anode Materials for High-Safety Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004855. [PMID: 34165894 PMCID: PMC8224428 DOI: 10.1002/advs.202004855] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Indexed: 05/05/2023]
Abstract
Wadsley-Roth crystallographic shear structure niobium-based oxides are of great interest in fast Li+ storage due to their unique 3D open tunnel structures that offer facile Li+ diffusion paths. Their moderate lithiation potential and reversible redox couples hold the great promise in the development of next-generation lithium-ion batteries (LIBs) that are characterized by high power density, long lifespan, and high safety. Despite these outstanding merits, there is still extensive advancement space for further enhancing their electrochemical kinetics. And the industrial feasibility of Wadsley-Roth crystallographic shear structure niobium-based oxides as anode materials for LIBs requires more systematic research. In this review, recent progress in this field is summarized with the aim of realizing the practical applications of Wadsley-Roth phase anode materials in commercial LIBs. The review focuses on research toward the crystalline structure analyses, electrochemical reaction mechanisms, modification strategies, and full cell performance. In addition to highlighting the current research advances, the outlook and perspective on Wadsley-Roth anode materials is also concisely provided.
Collapse
Affiliation(s)
- Yang Yang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
12
|
Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance. ENERGIES 2021. [DOI: 10.3390/en14113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Li-ion capacitors (LICs) are designed to achieve high power and energy densities using a carbon-based material as a positive electrode coupled with a negative electrode often adopted from Li-ion batteries. However, such adoption cannot be direct and requires additional materials optimization. Furthermore, for the desired device’s performance, a proper design of the electrodes is necessary to balance the different charge storage mechanisms. The negative electrode with an intercalation or alloying active material must provide the high rate performance and long-term cycling ability necessary for LIC functionality—a primary challenge for the design of these energy-storage devices. In addition, the search for new active materials must also consider the need for environmentally friendly chemistry and the sustainable availability of key elements. With these factors in mind, this review evaluates advanced and emerging materials used as high-rate anodes in LICs from the perspective of their practical implementation.
Collapse
|
13
|
Su K, Liu H, Gao Z, Fornasiero P, Wang F. Nb 2O 5-Based Photocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003156. [PMID: 33898172 PMCID: PMC8061393 DOI: 10.1002/advs.202003156] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Indexed: 05/02/2023]
Abstract
Photocatalysis is one potential solution to the energy and environmental crisis and greatly relies on the development of the catalysts. Niobium pentoxide (Nb2O5), a typically nontoxic metal oxide, is eco-friendly and exhibits strong oxidation ability, and has attracted considerable attention from researchers. Furthermore, unique Lewis acid sites (LASs) and Brønsted acid sites (BASs) are observed on Nb2O5 prepared by different methods. Herein, the recent advances in the synthesis and application of Nb2O5-based photocatalysts, including the pure Nb2O5, doped Nb2O5, metal species supported on Nb2O5, and other composited Nb2O5 catalysts, are summarized. An overview is provided for the role of size and crystalline phase, unsaturated Nb sites and oxygen vacancies, LASs and BASs, dopants and surface metal species, and heterojunction structure on the Nb2O5-based catalysts in photocatalysis. Finally, the challenges are also presented, which are possibly overcome by integrating the synthetic methodology, developing novel photoelectric characterization techniques, and a profound understanding of the local structure of Nb2O5.
Collapse
Affiliation(s)
- Kaiyi Su
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesINSTM ‐ Trieste and ICCOM ‐ CNR TriesteUniversity of TriesteVia L. Giorgieri 1Trieste34127Italy
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| |
Collapse
|
14
|
Liu H, He Y, Cao K, Wang S, Jiang Y, Liu X, Huang KJ, Jing QS, Jiao L. Stimulating the Reversibility of Sb 2 S 3 Anode for High-Performance Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008133. [PMID: 33586294 DOI: 10.1002/smll.202008133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Conversion-alloy sulfide materials for potassium-ion batteries (KIBs) have attracted considerable attention because of their high capacities and suitable working potentials. However, the sluggish kinetics and sulfur loss result in their rapid capacity degeneration as well as inferior rate capability. Herein, a strategy that uses the confinement and catalyzed effect of Nb2 O5 layers to restrict the sulfur species and facilitate them to form sulfides reversibly is proposed. Taking Sb2 S3 anode as an example, Sb2 S3 and Nb2 O5 are dispersed in the core and shell layers of carbon nanofibers (C NFs), respectively, constructing core@shell structure Sb2 S3 -C@Nb2 O5 -C NFs. Benefiting from the bi-functional Nb2 O5 layers, the electrochemical reversibility of Sb2 S3 is stimulated. As a result, the Sb2 S3 -C@Nb2 O5 -C NFs electrode delivers the rapidest K-ion diffusion coefficient, longest cycling stability, and most excellent rate capability among the controlled electrodes (347.5 mAh g-1 is kept at 0.1 A g-1 after 100 cycles, and a negligible capacity degradation (0.03% per cycle) at 2.0 A g-1 for 2200 cycles is delivered). The enhanced K-ion storage properties are also found in SnS2 -C@Nb2 O5 -C NFs electrode. Encouraged by the stimulated reversibility of Sb2 S3 and SnS2 anodes, other sulfides with high electrochemical performance also could be developed for KIBs.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Yanan He
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Shaodan Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Yong Jiang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaogang Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Qiang-Shan Jing
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Yu L, Zhou X, Lu L, Wu X, Wang F. Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries. CHEMSUSCHEM 2020; 13:5361-5407. [PMID: 32776650 DOI: 10.1002/cssc.202001562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Lithium ion batteries have been considered as a promising energy-storage solution, the performance of which depends on the electrochemical properties of each component, including cathode, anode, electrolyte and separator. Currently, fast charging is becoming an attractive research field due to the widespread application of batteries in electric vehicles, which are designated to replace conventional diesel automobiles in the future. In these batteries, rate capability, which is closely linked to the topology and morphology of electrode materials, is one of the determining parameters of interest. It has been revealed that nanotechnology is an exceptional tool in designing and preparing cathodes and anodes with outstanding electrochemical kinetics due to the well-known nanosizing effect. Nevertheless, the negative effects of applying nanomaterials in electrodes sometimes outweigh the benefits. To better understand the exact function of nanostructures in solid-state electrodes, herein, a comprehensive review is provided beginning with the fundamental theory of lithium ion transport in solids, which is then followed by a detailed analysis of several major factors affecting the migration of lithium ions in solid-state electrodes. The latest developments in characterisation techniques, based on either electrochemical or radiology methodologies, are covered as well. In addition, state-of-the-art research findings are provided to illustrate the effect of nanomaterials and nanostructures in promoting the rate performance of lithium ion batteries. Finally, several challenges and shortcomings of applying nanotechnology in fabricating high-rate lithium ion batteries are summarised.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - XiaoLi Wu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - FengJun Wang
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| |
Collapse
|
16
|
Jasim AM, Xu G, Al‐Salihi S, Xing Y. Dense Niobium Oxide Coating on Carbon Black as a Support to Platinum Electrocatalyst for Oxygen Reduction. ChemistrySelect 2020. [DOI: 10.1002/slct.202003225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed M. Jasim
- Department of Biomedical, Biological and Chemical Engineering University of Missouri Columbia, MO USA
| | - Gan Xu
- Department of Biomedical, Biological and Chemical Engineering University of Missouri Columbia, MO USA
| | - Sara Al‐Salihi
- Department of Biomedical, Biological and Chemical Engineering University of Missouri Columbia, MO USA
| | - Yangchuan Xing
- Department of Biomedical, Biological and Chemical Engineering University of Missouri Columbia, MO USA
- Department of Mechanical & Aerospace Engineering University of Missouri Columbia, MO USA
| |
Collapse
|
17
|
Kong S, Xu J, Lin G, Zhang S, Dong W, Wang J, Huang F. A rationally designed 3D interconnected porous tin dioxide cube with reserved space for volume expansion as an advanced anode of lithium-ion batteries. Chem Commun (Camb) 2020; 56:10289-10292. [PMID: 32756688 DOI: 10.1039/d0cc03948a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To work against the volume expansion (∼300%) of SnO2 during lithiation, here a sub-micro sized, interconnected, and porous SnO2 cube with rationally designed reserved space (∼375%) is synthesized via an artful topochemistry route (CaSn(OH)6-CaSnO3-SnO2). Owing to its microstructure, this novel material harvests enhanced lithium-storage performance.
Collapse
Affiliation(s)
- Shuyi Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China.
| | | | | | | | | | | | | |
Collapse
|