1
|
Malik MY, Guo F, Asif-Malik A, Eftychidis V, Barkas N, Eliseeva E, Timm KN, Wolska A, Bergin D, Zonta B, Ratz-Wirsching V, von Hörsten S, Walton ME, Magill PJ, Nerlov C, Minichiello L. Impaired striatal glutathione-ascorbate metabolism induces transient dopamine increase and motor dysfunction. Nat Metab 2024; 6:2100-2117. [PMID: 39468205 PMCID: PMC11599059 DOI: 10.1038/s42255-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington's disease (HD), hyperdopaminergia-probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)-is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by Ntrk2/Trkb deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of Gsto2, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing Gsto2 in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione-ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.
Collapse
Affiliation(s)
| | - Fei Guo
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Aman Asif-Malik
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Nikolaos Barkas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | - Elena Eliseeva
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - David Bergin
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Barbara Zonta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Veronika Ratz-Wirsching
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Mark E Walton
- Department of Experimental Psychology, Oxford University, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK
| | - Peter J Magill
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
2
|
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J, Zhang J. From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease. Brain Res 2024; 1838:148992. [PMID: 38729333 DOI: 10.1016/j.brainres.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China.
| |
Collapse
|
3
|
Griego E, Galván EJ. BDNF and Lactate as Modulators of Hippocampal CA3 Network Physiology. Cell Mol Neurobiol 2023; 43:4007-4022. [PMID: 37874456 DOI: 10.1007/s10571-023-01425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Mexico City, Mexico.
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico
- Centro de Investigaciones sobre el Envejecimiento, Mexico City, Mexico
| |
Collapse
|
4
|
Mrad Y, El Jammal R, Hajjar H, Alturk S, Salah H, Chehade HD, Dandash F, Mallah Z, Kobeissy F, Habib A, Hamade E, Obeid M. Lestaurtinib (CEP-701) reduces the duration of limbic status epilepticus in periadolescent rats. Epilepsy Res 2023; 195:107198. [PMID: 37467703 DOI: 10.1016/j.eplepsyres.2023.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The timely abortion of status epilepticus (SE) is essential to avoid brain damage and long-term neurodevelopmental sequalae. However, available anti-seizure treatments fail to abort SE in 30% of children. Given the role of the tropomyosin-related kinase B (TrkB) receptor in hyperexcitability, we investigated if TrkB blockade with lestaurtinib (CEP-701) enhances the response of SE to a standard treatment protocol and reduces SE-related brain injury. METHODS SE was induced with intra-amygdalar kainic acid in postnatal day 45 rats under continuous electroencephalogram (EEG). Fifteen min post-SE onset, rats received intraperitoneal (i.p.) CEP-701 (KCEP group) or its vehicle (KV group). Controls received CEP-701 or its vehicle following intra-amygdalar saline. All groups received two i.p. doses of diazepam, followed by i.p. levetiracetam at 15 min intervals post-SE onset. Hippocampal TrkB dimer to monomer ratios were assessed by immunoblot 24 hr post-SE, along with neuronal densities and glial fibrillary acid protein (GFAP) levels. RESULTS SE duration was 50% shorter in the KCEP group compared to KV (p < 0.05). Compared to controls, SE induced a 1.5-fold increase in TrkB dimerization in KV rats (p < 0.05), but not in KCEP rats which were comparable to controls (p > 0.05). The KCEP group had lower GFAP levels than KV (p < 0.05), and both were higher than controls (p < 0.05). KCEP and KV rats had comparable hippocampal neuronal densities (p > 0.05), and both were lower than controls (p < 0.05). CONCLUSIONS Given its established human safety, CEP-701 is a promising adjuvant drug for the timely abortion of SE and the attenuation of SE-related brain injury.
Collapse
Affiliation(s)
- Yara Mrad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem El Jammal
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helene Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sana Alturk
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Houssein Salah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba-Douja Chehade
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Fatima Dandash
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Child Neurology, Department of Neurology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Cherubini E, Ben-Ari Y. GABA Signaling: Therapeutic Targets for Neurodegenerative and Neurodevelopmental Disorders. Brain Sci 2023; 13:1240. [PMID: 37759841 PMCID: PMC10526277 DOI: 10.3390/brainsci13091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This Special Issue, "GABA Signaling: Therapeutic Targets for Neurodegenerative and Neurodevelopmental Disorders", focuses on a fundamental property of the neurotransmitter γ-aminobutyric acid (GABA), namely its capacity to shift, in particular conditions, from the hyperpolarizing to the depolarizing direction [...].
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Viale Regina Elena 293-295, 00161 Roma, Italy
| | - Yehezkel Ben-Ari
- Neurochlore, Campus Scientifique de Luminy, 163 Route de Luminy, CEDEX 09, 13288 Marseille, France;
| |
Collapse
|
6
|
Impaired synaptic plasticity in an animal model of autism exhibiting early hippocampal GABAergic-BDNF/TrkB signaling alterations. iScience 2022; 26:105728. [PMID: 36582822 PMCID: PMC9793278 DOI: 10.1016/j.isci.2022.105728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In Neurodevelopmental Disorders, alterations of synaptic plasticity may trigger structural changes in neuronal circuits involved in cognitive functions. This hypothesis was tested in mice carrying the human R451C mutation of Nlgn3 gene (NLG3R451C KI), found in some families with autistic children. To this aim, the spike time dependent plasticity (STDP) protocol was applied to immature GABAergic Mossy Fibers (MF)-CA3 connections in hippocampal slices from NLG3R451C KI mice. These animals failed to exhibit STD-LTP, an effect that persisted in adulthood when these synapses became glutamatergic. Similar results were obtained in mice lacking the Nlgn3 gene (NLG3 KO mice), suggesting a loss of function. The loss of STD-LTP was associated with a premature shift of GABA from the depolarizing to the hyperpolarizing direction, a reduced BDNF availability and TrkB phosphorylation at potentiated synapses. These effects may constitute a general mechanism underlying cognitive deficits in those forms of Autism caused by synaptic dysfunctions.
Collapse
|
7
|
Flores AD, Yu WS, Fung ML, Lim LW. Neuromodulation and hippocampal neurogenesis in depression: A scoping review. Brain Res Bull 2022; 188:92-107. [PMID: 35853529 DOI: 10.1016/j.brainresbull.2022.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The 'neurogenesis hypothesis of depression' emphasizes the importance of upregulated hippocampal neurogenesis for the efficacy of antidepressant treatment. Neuromodulation is a promising therapeutic method that stimulates neural circuitries to treat neuropsychiatric illnesses. We conducted a scoping review on the neurogenic and antidepressant outcomes of neuromodulation in animal models of depression. PubMed, Web of Science, and PsycInfo were comprehensively searched for full-text English articles from inception to October 5, 2021. Data screening and extraction were conducted independently by two researchers. Seventeen eligible studies were included in this review. The majority of studies used non-invasive neuromodulation (n = 14) and assessed neurogenesis using neural proliferation (n = 16) and differentiation markers (n = 9). Limited reports (n = 2) used neurogenic inhibitors to evaluate the role of neurogenesis on the depressive-like behavioral outcomes. Overall, neuromodulation substantially effectuated both hippocampal cell proliferation and antidepressant-like behavior in animal models of depression, with some providing evidence for enhanced neuronal differentiation and maturation. The proposed neurogenic-related mechanisms mediating the neuromodulation efficacies included neurotrophic processes, anti-apoptotic pathways, and normalization of HPA axis functions. Further research is warranted to explore the role of neuromodulation-induced neurogenic effects on treatment efficacies and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Angelo D Flores
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sci 2022; 12:brainsci12040502. [PMID: 35448033 PMCID: PMC9030861 DOI: 10.3390/brainsci12040502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl− homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.
Collapse
|
9
|
Hu B, Zhang J, Gong M, Deng Y, Cao Y, Xiang Y, Ye D. Research Progress of Olfactory Nerve Regeneration Mechanism and Olfactory Training. Ther Clin Risk Manag 2022; 18:185-195. [PMID: 35281777 PMCID: PMC8906848 DOI: 10.2147/tcrm.s354695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The olfactory nerve (ON) is the only cranial nerve exposed to the external environment. Hence, it is susceptible to damage from head trauma, viral infection, inflammatory stimulation, and chemical toxins, which can lead to olfactory dysfunction. However, compared with all other cranial nerves, the ON is unique due to its inherent ability to regenerate. This characteristic provides a theoretical basis for treatment of olfactory dysfunction. Olfactory training (OT) is one of the main treatments for olfactory dysfunction. It is easy to apply and has few side-effects, and has been shown to be efficacious for patients with olfactory dysfunction of various causes. To further understand the application value of ON regeneration and OT on olfactory dysfunction, we review the research progress on the mechanism of ON regeneration and OT.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315699, Zhejiang, People’s Republic of China
| | - Jingyu Zhang
- Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Correspondence: Dong Ye, Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China, Tel +86 13819861213, Fax +86 574-87392232, Email
| |
Collapse
|
10
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Lan YX, Yang P, Zeng Z, Yadav N, Zhang LJ, Wang LB, Xia HC. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen Res 2022; 17:440-449. [PMID: 34269221 PMCID: PMC8463967 DOI: 10.4103/1673-5374.317986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques. The results revealed that both OB-derived OECs and OM-derived OECs highly expressed genes and proteins that regulate cell growth, proliferation, apoptosis and vascular endothelial cell regeneration. The differentially expressed genes and proteins of OB-derived OECs play a key role in regulation of nerve regeneration and axon regeneration and extension, transmission of nerve impulses and response to axon injury. The differentially expressed genes and proteins of OM-derived OECs mainly participate in the positive regulation of inflammatory response, defense response, cytokine binding, cell migration and wound healing. These findings suggest that differentially expressed genes and proteins may explain why OB-derived OECs and OM-derived OECs exhibit different therapeutic roles. This study was approved by the Animal Ethics Committee of the General Hospital of Ningxia Medical University (approval No. 2017-073) on February 13, 2017.
Collapse
Affiliation(s)
- Yuan-Xiang Lan
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ping Yang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Neeraj Yadav
- Department of Neurosurgery, General Hospital of Ningxia Medical University; School of International Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Jian Zhang
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Bin Wang
- Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - He-Chun Xia
- Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
12
|
Hippocampal injury and learning deficits following non-convulsive status epilepticus in periadolescent rats. Epilepsy Behav 2021; 125:108415. [PMID: 34788732 DOI: 10.1016/j.yebeh.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The effects of non-convulsive status epilepticus (NCSE) on the developing brain remain largely elusive. Here we investigated potential hippocampal injury and learning deficits following one or two episodes of NCSE in periadolescent rats. Non-convulsive status epilepticus was induced with subconvulsive doses of intrahippocampal kainic acid (KA) under continuous EEG monitoring in postnatal day 43 (P43) rats. The RKA group (repeated KA) received intrahippocampal KA at P43 and P44, the SKA group (single KA injection) received KA at P43 and an intrahippocampal saline injection at P44. Controls were sham-treated with saline. The modified two-way active avoidance (MAAV) test was conducted between P45 and P52 to assess learning of context-cued and tone-signaled electrical foot-shock avoidance. Histological analyses were performed at P52 to assess hippocampal neuronal densities, as well as potential reactive astrocytosis and synaptic dysfunction with GFAP (glial fibrillary acidic protein) and synaptophysin (Syp) staining, respectively. Kainic acid injections resulted in electroclinical seizures characterized by behavioral arrest, oromotor automatisms and salivation, without tonic-clonic activity. Compared to controls, both the SKA and RKA groups had lower rates of tone-signaled shock avoidance (p < 0.05). In contextual testing, SKA rats were comparable to controls (p > 0.05), but the RKA group had learning deficits (p < 0.05). Hippocampal neuronal densities were comparable in all groups. Compared to controls, both the SKA and RKA groups had higher hippocampal GFAP levels (p < 0.05). The RKA group also had lower hippocampal Syp levels compared to the SKA and control groups (p < 0.05), which were comparable (p > 0.05). We show that hippocampal NCSE in periadolescent rats results in a seizure burden-dependent hippocampal injury accompanied by cognitive deficits. Our data suggest that the diagnosis and treatment of NCSE should be prompt.
Collapse
|
13
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
14
|
Gustorff C, Scheuer T, Schmitz T, Bührer C, Endesfelder S. GABA B Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front Cell Neurosci 2021; 15:651072. [PMID: 34421540 PMCID: PMC8377254 DOI: 10.3389/fncel.2021.651072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
The neurotransmitter GABA and its receptors assume essential functions during fetal and postnatal brain development. The last trimester of a human pregnancy and early postnatal life involves a vulnerable period of brain development. In the second half of gestation, there is a developmental shift from depolarizing to hyperpolarizing in the GABAergic system, which might be disturbed by preterm birth. Alterations of the postnatal GABA shift are associated with several neurodevelopmental disorders. In this in vivo study, we investigated neurogenesis in the dentate gyrus (DG) in response to daily administration of pharmacological GABAA (DMCM) and GABAB (CGP 35348) receptor inhibitors to newborn rats. Six-day-old Wistar rats (P6) were daily injected (i.p.) to postnatal day 11 (P11) with DMCM, CGP 35348, or vehicle to determine the effects of both antagonists on postnatal neurogenesis. Due to GABAB receptor blockade by CGP 35348, immunohistochemistry revealed a decrease in the number of NeuroD1 positive intermediate progenitor cells and a reduction of proliferative Nestin-positive neuronal stem cells at the DG. The impairment of hippocampal neurogenesis at this stage of differentiation is in line with a significantly decreased RNA expression of the transcription factors Pax6, Ascl1, and NeuroD1. Interestingly, the number of NeuN-positive postmitotic neurons was not affected by GABAB receptor blockade, although strictly associated transcription factors for postmitotic neurons, Tbr1, Prox1, and NeuroD2, displayed reduced expression levels, suggesting impairment by GABAB receptor antagonization at this stage of neurogenesis. Antagonization of GABAB receptors decreased the expression of neurotrophins (BDNF, NT-3, and NGF). In contrast to the GABAB receptor blockade, the GABAA receptor antagonization revealed no significant changes in cell counts, but an increased transcriptional expression of Tbr1 and Tbr2. We conclude that GABAergic signaling via the metabotropic GABAB receptor is crucial for hippocampal neurogenesis at the time of rapid brain growth and of the postnatal GABA shift. Differentiation and proliferation of intermediate progenitor cells are dependent on GABA. These insights become more pertinent in preterm infants whose developing brains are prematurely exposed to spostnatal stress and predisposed to poor neurodevelopmental disorders, possibly as sequelae of early disruption in GABAergic signaling.
Collapse
Affiliation(s)
- Charlotte Gustorff
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
15
|
Gu Y, Wu H, Wang T, Yu S, Han Z, Zhang W, Mu L, Wang H, Na M, Wang H, Lin Z. Profiling Analysis of Circular RNA and mRNA in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis ILAE Type 1. Cell Mol Neurobiol 2021; 42:2745-2755. [PMID: 34338959 DOI: 10.1007/s10571-021-01136-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022]
Abstract
Hippocampal sclerosis (HS) is the most common surgical pathology associated with temporal lobe epilepsy (TLE). However, the cause of TLE with or without HS remains unknown. Our current study aimed to illustrate the essential molecular mechanism that is potentially involved in the pathogenesis of TLE-HS and to shed light on the transcriptional changes associated with hippocampal sclerosis. Compared to no-HS group, 341 mRNA transcripts and 131 circRNA transcripts were differentially expressed in ILAE type 1 group. The raw sequencing data have been deposited into sequence-read archive (SRA) database under accession number PRJNA699348.Gene Ontology analysis demonstrated that the dysregulated genes were associated with the biological processes of vesicle-mediated transport. Enrichment analysis demonstrated that dysregulated genes were involved mainly in the MAPK signal pathway. Subsequently, A total of 441 known or predicted interactions were formed among DEGs, and the most important module was detected in the PPI network using the MCODE plug-in. There were mainly four functional modules enriched: ER to Golgi transport vesicle membrane, Basal transcription factors, GABA-gated chloride ion channel activity, CENP-A containing nucleosome assembly. A circRNA-mRNA co-expression network was constructed including 5 circRNAs(hsa_circ_0025349, hsa_circ_0002405, hsa_circ_0004805, hsa_circ_0032254, and hsa_circ_0032875) and three mRNAs (FYN, SELENBP1, and GRIPAP1) based on the normalized mRNA signal intensities. This is the first to report the circRNAs and mRNAs expression profile of surgically resected hippocampal tissues from TLE patients of ILAE-1 and no-HS, and these results may provide new insight into the transcriptional changes associated with this pathology.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hongmei Wu
- Department of Pathology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wang Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hongda Wang
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|