1
|
Zhou R, Qu J, Liu X, Lin F, Ohulchanskyy TY, Alifu N, Qu J, Yin DC. Biopharmaceutical drug delivery and phototherapy using protein crystals. Adv Drug Deliv Rev 2025; 216:115480. [PMID: 39613032 DOI: 10.1016/j.addr.2024.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Biopharmaceutical drugs, including proteins, peptides, and antibodies, are renowned for their high specificity and efficacy, fundamentally transforming disease treatment paradigms. However, their structural complexity presents challenges for their formulation and delivery. Protein crystals, characterized by high purity, high stability and a porous structure for biopharmaceutical drug encapsulation, providing a potential avenue for formulating and delivering biopharmaceutical drugs. There is increasing interest in engineering protein crystals to delivery biopharmaceutical drugs for biomedical applications. This review summarizes the recent advances in biopharmaceutical drug delivery and phototherapy using protein crystals. First, we evaluate the advantages of using protein crystals for biopharmaceutical drugs delivery. Next, we outline the strategies for in vitro and in vivo crystallization to prepare protein crystals. Importantly, the review highlights the advanced applications of protein crystals in biopharmaceutical drug delivery, tumor phototherapy, and other optical fields. Finally, it provides insights into future perspectives of biopharmaceutical drug delivery using protein crystals. This comprehensive review aims to provide effective insights into design of protein crystals to simplify biopharmaceutical drug delivery and improve disease treatment.
Collapse
Affiliation(s)
- Renbin Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Jinghan Qu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xuejiao Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Fangrui Lin
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Nuernisha Alifu
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
2
|
Habib M, Zheng J, Chan CF, Yang Z, Wong ILK, Chow LMC, Lee MM, Chan MK. A Targeted and Protease-Activated Genetically Encoded Melittin-Containing Particle for the Treatment of Cutaneous and Visceral Leishmaniasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49148-49163. [PMID: 39240583 PMCID: PMC11420870 DOI: 10.1021/acsami.4c10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Intracellular infections are difficult to treat, as pathogens can take advantage of intracellular hiding, evade the immune system, and persist and multiply in host cells. One such intracellular parasite, Leishmania, is the causative agent of leishmaniasis, a neglected tropical disease (NTD), which disproportionately affects the world's most economically disadvantaged. Existing treatments have relied mostly on chemotherapeutic compounds that are becoming increasingly ineffective due to drug resistance, while the development of new therapeutics has been challenging due to the variety of clinical manifestations caused by different Leishmania species. The antimicrobial peptide melittin has been shown to be effective in vitro against a broad spectrum of Leishmania, including species that cause the most common form, cutaneous leishmaniasis, and the most deadly, visceral leishmaniasis. However, melittin's high hemolytic and cytotoxic activity toward host cells has limited its potential for clinical translation. Herein, we report a design strategy for producing a melittin-containing antileishmanial agent that not only enhances melittin's leishmanicidal potency but also abrogates its hemolytic and cytotoxic activity. This therapeutic construct can be directly produced in bacteria, significantly reducing its production cost critical for a NTD therapeutic. The designed melittin-containing fusion crystal incorporates a bioresponsive cathepsin linker that enables it to specifically release melittin in the phagolysosome of infected macrophages. Significantly, this targeted approach has been demonstrated to be efficacious in treating macrophages infected with L. amazonensis and L. donovani in cell-based models and in the corresponding cutaneous and visceral mouse models.
Collapse
Affiliation(s)
- Madiha Habib
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jiale Zheng
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Chin-Fung Chan
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Zaofeng Yang
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Iris L. K. Wong
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Larry M. C. Chow
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Marianne M. Lee
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Michael K. Chan
- School
of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Zoneff E, Wang Y, Jackson C, Smith O, Duchi S, Onofrillo C, Farrugia B, Moulton SE, Williams R, Parish C, Nisbet DR, Caballero-Aguilar LM. Controlled oxygen delivery to power tissue regeneration. Nat Commun 2024; 15:4361. [PMID: 38778053 PMCID: PMC11111456 DOI: 10.1038/s41467-024-48719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.
Collapse
Affiliation(s)
- Elizabeth Zoneff
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Oliver Smith
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Serena Duchi
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Williams
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Clare Parish
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia.
| | - Lilith M Caballero-Aguilar
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Hosseini FS, Abedini AA, Chen F, Whitfield T, Ude CC, Laurencin CT. Oxygen-Generating Biomaterials for Translational Bone Regenerative Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50721-50741. [PMID: 36988393 DOI: 10.1021/acsami.2c20715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Successful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen. Indeed, utilizing oxygen-generating materials can overcome the central hypoxic region, induce tissue in-growth, and increase the quality of life for patients with extensive tissue damage. This article reviews recent advances in oxygen-generating biomaterials for translational bone regenerative engineering. We discussed different oxygen-releasing and delivery methods, fabrication methods for oxygen-releasing matrices, biology, oxygen's role in bone regeneration, and emerging new oxygen delivery methods that could potentially be used for bone regenerative engineering.
Collapse
Affiliation(s)
- Fatemeh S Hosseini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Amir Abbas Abedini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
| | - Taraje Whitfield
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
| | - Chinedu C Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911483. [PMID: 36232784 PMCID: PMC9570501 DOI: 10.3390/ijms231911483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The expression of myoglobin (MB), well known as the oxygen storage and transport protein of myocytes, is a novel hallmark of the luminal subtype in breast cancer patients and correlates with better prognosis. The mechanisms by which MB impacts mammary tumorigenesis are hitherto unclear. We aimed to unravel this role by using CRISPR/Cas9 technology to generate MB-deficient clones of MCF7 and SKBR3 breast cancer cell lines and subsequently characterize them by transcriptomics plus molecular and functional analyses. As main findings, loss of MB at normoxia upregulated the expression of cell cyclins and increased cell survival, while it prevented apoptosis in MCF7 cells. Additionally, MB-deficient cells were less sensitive to doxorubicin but not ionizing radiation. Under hypoxia, the loss of MB enhanced the partial epithelial to mesenchymal transition, thus, augmenting the migratory and invasive behavior of cells. Notably, in human invasive mammary ductal carcinoma tissues, MB and apoptotic marker levels were positively correlated. In addition, MB protein expression in invasive ductal carcinomas was associated with a positive prognostic value, independent of the known tumor suppressor p53. In conclusion, we provide multiple lines of evidence that endogenous MB in cancer cells by itself exerts novel tumor-suppressive roles through which it can reduce cancer malignancy.
Collapse
|
6
|
Cases
Díaz J, Lozano-Torres B, Giménez-Marqués M. Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal-Organic Framework Mineralization: Toward Effective Intracellular Delivery. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7817-7827. [PMID: 36117882 PMCID: PMC9476658 DOI: 10.1021/acs.chemmater.2c01338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Indexed: 05/10/2023]
Abstract
Encapsulation of biomolecules using metal-organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azolate-based MOF encapsulation. Specifically, we prove the MIL-100(Fe) scaffold for the encapsulation of a group of proteins exhibiting very different isoelectric points (5 < pI < 11), allowing triggered release under biocompatible conditions and retaining their activity after exposure to denaturing environments. Finally, we demonstrate the potential of the myoglobin-carrying biocomposite to facilitate the delivery of O2 into hypoxic human lung carcinoma A549 cells, overcoming hypoxia-associated chemoresistance.
Collapse
|
7
|
Yang Z, Sun JKL, Lee MM, Chan MK. Restoration of p53 activity via intracellular protein delivery sensitizes triple negative breast cancer to anti-PD-1 immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005068. [PMID: 36104100 PMCID: PMC9476161 DOI: 10.1136/jitc-2022-005068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Although immune checkpoint inhibitors (ICIs) have been shown to yield promising therapeutic outcomes in a small subset of patients with triple negative breast cancer (TNBC), the majority of patients either do not respond or subsequently develop resistance. Recent studies have revealed the critical role of TP53 gene in cancer immunology. Loss or mutation of p53 in cancer cells has been found to promote their immune escape. Given the high mutation frequency of TP53 in TNBC cells, restoration of p53 function could be a potential strategy to overcome their resistance to anti-programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) therapy. Herein, we have assessed the use of Pos3Aa crystal-based platform to mediate the intracellular delivery of p53 protein to restore p53 activity in p53 null tumors and consequently augment anti-PD-1 activity. Methods The efficiency of Pos3Aa-p53 crystals in delivering p53 protein was evaluated using confocal imaging, immunofluorescence staining, flow cytometry and RNA-seq. The ability of Pos3Aa-p53 crystals to remodel tumor microenvironment was investigated by examining the markers of immunogenic cell death (ICD) and the expression of PD-L1, indoleamine 2,3-dioxygenase 1, tryptophan 2,3-dioxygenase 2 and type I interferon (IFN). Finally, both unilateral and bilateral 4T1 tumor mouse models were utilized to assess the efficacy of Pos3Aa-p53 crystal-mediated p53 restoration in enhancing the antitumor activity of ICIs. T cells in tumor tissues and spleens were analyzed, and the in vivo biosafety of the Pos3Aa-p53 crystal/anti-PD-1 antibody combination was also evaluated. Results Delivery of p53 protein into p53-null TNBC 4T1 cells via Pos3Aa-p53 crystals restored the p53 activity, and therefore led to the induction of ICD, activation of type I IFN signaling and upregulation of PD-L1 expression. Pos3Aa-p53 crystals significantly enhanced T cell infiltration and activation in 4T1 tumors, thereby sensitizing them to anti-PD-1 therapy. The combination of Pos3Aa-p53 crystals with anti-PD-1 antibody also induced a systemic antitumor immunity resulting in the inhibition of distal tumor growth with minimal toxicity. Conclusion This study validates that p53 restoration can be an effective approach to overcome ICI resistance and demonstrates that intracellular delivery of p53 protein can be an efficient, safe and potentially universal strategy to restore p53 activity in tumors carrying TP53 mutation.
Collapse
Affiliation(s)
- Zaofeng Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Marianne M Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong .,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Michael K Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong .,Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
8
|
Sun Q, Heater BS, Li TL, Ye W, Guo Z, Chan MK. Cry3Aa*SpyCatcher Fusion Crystals Produced in Bacteria as Scaffolds for Multienzyme Coimmobilization. Bioconjug Chem 2022; 33:386-396. [PMID: 35100510 DOI: 10.1021/acs.bioconjchem.2c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of Cry3Aa enzyme fusion crystals in Bacillus thuringiensis provides a direct method to immobilize individual enzymes and thereby improve their stability and recyclability. Nevertheless, many reactions require multiple enzymes to produce a desired product; thus a general strategy was developed to extend our Cry3Aa technology to multienzyme coimmobilization. Here, we report the direct production of particles comprising a modified Cry3Aa (Cry3Aa*) fused to SpyCatcher002 (Cry3Aa*SpyCat2) for coimmobilization of model enzymes MenF, MenD, and MenH associated with the biosynthesis of menaquinone. The resultant coimmobilized particles showed improved reaction rates compared to free enzymes presumably due to the higher local enzyme substrate concentrations and enhanced enzyme coupling made possible by colocalization. Furthermore, coimmobilization of these enzymes on Cry3Aa*SpyCat2 led to increased thermal stability and recyclability of the overall multienzyme system. These characteristics together with its overall simplicity of production highlight the benefits of Cry3Aa*SpyCat2 crystals as a platform for enzyme coimmobilization.
Collapse
Affiliation(s)
- Qian Sun
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley S Heater
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tin Lok Li
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Weijian Ye
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
9
|
Wang M, Liao S, Fu Z, Zang X, Yin S, Wang T. iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia. J Proteomics 2022; 251:104425. [PMID: 34785373 DOI: 10.1016/j.jprot.2021.104425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Dissolved oxygen is one of the determinants in the healthy farming of Pelteobagrus vachelli. This study, we conducted quantitative proteomics on the juvenile P. vachelli livers using iTRAQ. P. vachelli were treated by 3.75 ± 0.25 mg O2/L (hypoxia group) and 7.25 ± 0.25 mg O2/L (control group) for 90 days. The results revealed that under hypoxic conditions, P. vachelli grew slower than control group. Proteomic profiling enabled us to identify 2618 proteins, of which 176 were significantly differentially abundant proteins (DAPs). Verification of protein regulation based on qRT-PCR indicated that the proteomics data were reliable. The top 20 significantly DAPs (10 up-regulated, 10 down-regulated) were primarily involved in energy metabolism, apoptosis inhibition, and heavy metal detoxification. KEGG pathway enrichment analysis revealed significant enrichment of 'protein digestion and absorption', 'glycolysis/gluconeogenesis', and 'phagosome'. Combining the proteomics results of short-term hypoxia (treated with 0.70 ± 0.10 mg O2 /L for 4 h), we screened 36 common DAPs. The analysis of the 36 common DAPs indicated that P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis, and disturbing defensive system. Our results lay a theoretical foundation for the cultivation of hypoxia-tolerant species and eco-breeding of P. vachelli. SIGNIFICANCE OF THE STUDY: The hypoxia tolerance of Pelteobagrus vachelli is poor, which will seriously lead to its death in high-density culture. This study analysed the liver proteome of P. vachelli under long-term hypoxia stress (treated for 90 days at 3.75 ± 0.25 mg O2/L), and then combined the proteome results of short-term hypoxia stress (treated for 4 h at 0.70 ± 0.10 mg O2/L). The results showed P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis and disturbing defensive system. The study contributes to the breeding of new hypoxia-tolerant species of P. vachelli and lays the theoretical foundation for eco-breeding.
Collapse
Affiliation(s)
- Min Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shujia Liao
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhineng Fu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuechun Zang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
10
|
Kojima M, Abe S, Ueno T. Engineering of protein crystals for use as solid biomaterials. Biomater Sci 2021; 10:354-367. [PMID: 34928275 DOI: 10.1039/d1bm01752g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein crystals have attracted a great deal of attention as solid biomaterials because they have porous structures created by regular assemblies of proteins. The lattice structures of protein crystals are controlled by designing molecular interfacial interactions via covalent bonds and non-covalent bonds. Protein crystals have been functionalized as templates to immobilize foreign molecules such as metal nanoparticles, metal complexes, and proteins. These hybrid crystals are used as functional materials for catalytic reactions and structural analysis. Furthermore, in-cell protein crystals have been studied extensively, providing progress in rapid protein crystallization and crystallography. This review highlights recent advances in crystal engineering for protein crystallization and generation of solid functional materials both in vitro and within cells.
Collapse
Affiliation(s)
- Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
11
|
Yang Z, Yang M, Chow HM, Tsang SY, Lee MM, Chan MK. Cytosolic delivery of CDK4/6 inhibitor p16 protein using engineered protein crystals for cancer therapy. Acta Biomater 2021; 135:582-592. [PMID: 34496285 DOI: 10.1016/j.actbio.2021.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The tumor suppressor p16 protein is an endogenous CDK4/6 inhibitor. Inactivation of its encoding gene is found in nearly half of human cancers. Restoration of p16 function via adenovirus-based gene delivery has been shown to be effective in suppressing aberrant cell growth in many types of cancer, however, the potential risk of insertional mutagenesis in genomic DNA remains a major concern. Thus, there has been great interest in developing efficient strategies to directly deliver proteins into cells as an alternative that can avoid such safety concerns while achieving a comparable therapeutic effect. Nevertheless, intracellular delivery of protein therapeutics remains a challenge. Our group has recently developed a protein delivery platform based on an engineered Pos3Aa protein that forms sub-micrometer-sized crystals in Bacillus thuringiensis cells. In this report, we describe the further development of this platform (Pos3AaTM) via rationally designed site-directed mutagenesis, and its resultant potency for the delivery of cargo proteins into cells. Pos3AaTM-based fusion protein crystals are shown to exhibit improved release of their cargo proteins as demonstrated using a model mCherry protein. Importantly, this Pos3AaTM platform is able to mediate the efficient intracellular delivery of p16 protein with significant endosomal escape, resulting in p16-mediated inhibition of CDK4/6 kinase activity and Rb phosphorylation, and as a consequence, significant cell cycle arrest and cell growth inhibition. These results validate the ability of these improved Pos3AaTM crystals to mediate enhanced cytosolic protein delivery and highlight the potential of using protein therapeutics as selective CDK4/6 inhibitors for cancer therapy. STATEMENT OF SIGNIFICANCE: Cytosolic delivery of bioactive therapeutic proteins capable of eliciting therapeutic benefit remains a significant challenge. We have previously developed a protein delivery platform based on engineered Pos3Aa protein crystals with excellent cell-permeability and endosomal escape properties. In this report, we describe the rational design of an improved Pos3Aa triple mutant (Pos3AaTM) with enhanced cargo release. We demonstrate that Pos3AaTM-mCherry-p16 fusion crystals can efficiently deliver p16 protein, a CDK4/6 inhibitor frequently inactivated in human cancers, into p16-deficient UM-SCC-22A cells, where it promotes significant G1 cell cycle arrest and cell growth inhibition. These results highlight the ability of the Pos3AaTM platform to promote potent cytosolic delivery of protein therapeutics, and the efficacy of p16 protein delivery as an effective strategy for treating cancer.
Collapse
Affiliation(s)
- Zaofeng Yang
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region
| | - Meigui Yang
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region
| | - Hei-Man Chow
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region
| | - Suk Ying Tsang
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region
| | - Marianne M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region.
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Tetreau G, Andreeva EA, Banneville AS, De Zitter E, Colletier JP. Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins? Toxins (Basel) 2021; 13:toxins13070441. [PMID: 34206749 PMCID: PMC8309801 DOI: 10.3390/toxins13070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.
Collapse
|
13
|
Yan J, Yu X, Chen X, Liu F, Chen F, Ding N, Yu L, Meng F, Shen J, Wei J, Liu B. Identification of a Glypican-3 Binding Peptide From a Phage-Displayed Peptide Library for PET Imaging of Hepatocellular Carcinoma. Front Oncol 2021; 11:679336. [PMID: 34150644 PMCID: PMC8212053 DOI: 10.3389/fonc.2021.679336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor-targeting peptides functioned as molecular probes are essential for multi-modality imaging and molecular-targeting therapy in caner theronostics. Here, we performed a phage-displayed bio-panning to identify a specific binding peptide targeting Glypican-3 (GPC-3), a promising biomarker in hepatocellular carcinoma (HCC). After screening in the cyclic peptide library, a candidate peptide named F3, was isolated and showed specific binding to HCC cell lines. In a bio-distribution study, higher accumulation of F3 peptide was observed in HepG-2 tumors compared to PC-3 tumors in xenograft models. After labeling with radioactive 68Ga, the F3 peptide tracer enabled the specific detection of tumors in HCC tumor models with PET imaging. More importantly, the expression of GPC-3 in human tissue samples may be distinguished by an F3 fluorescent peptide probe indicating its potential for clinical application. This cyclic peptide targeting GPC-3 has been validated, and may be an alternative to serve as an imaging probe or a targeting domain in the drug conjugate.
Collapse
Affiliation(s)
- Jiayao Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiaotong Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- The Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangjun Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Naiqing Ding
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Shen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
14
|
Yang Z, Lee MMM, Chan MK. Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials 2021; 271:120759. [PMID: 33798968 DOI: 10.1016/j.biomaterials.2021.120759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Direct delivery of proteins into cells holds significant potential for basic research and drug development. However, the poor endosomal escape of conventional delivery strategies remains a challenge, thus limiting the clinical translation of many protein therapeutics. Herein, we report that engineered Cry3Aa protein (Pos3Aa) crystals formed naturally within Bacillus thuringiensis can serve as a vehicle for efficient cytosolic delivery of bioactive proteins. We showed that Pos3Aa-mediated delivery of tumor suppressor p53 protein, a promising therapeutic candidate found to be inactivated in nearly half of human cancers, resulted in the restoration of p53 function in p53-deficient cancer cells, and thereby sensitized them to 5-fluorouracil chemotherapy as demonstrated in in vitro and in vivo models. Our results validate that Pos3Aa crystals can be a robust and effective platform for the cytosolic delivery of effector proteins, and suggest that efficient uptake and endosomal escape could be critical for efficacious p53 protein-based cancer therapy.
Collapse
Affiliation(s)
- Zaofeng Yang
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Marianne M M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
15
|
Quinting T, Heymann AK, Bicker A, Nauth T, Bernardini A, Hankeln T, Fandrey J, Schreiber T. Myoglobin Protects Breast Cancer Cells Due to Its ROS and NO Scavenging Properties. Front Endocrinol (Lausanne) 2021; 12:732190. [PMID: 34671319 PMCID: PMC8521001 DOI: 10.3389/fendo.2021.732190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Myoglobin (MB) is an oxygen-binding protein usually found in cardiac myocytes and skeletal muscle fibers. It may function as a temporary storage and transport protein for O2 but could also have scavenging capacity for reactive oxygen and nitrogen species. In addition, MB has recently been identified as a hallmark in luminal breast cancer and was shown to be robustly induced under hypoxia. Cellular responses to hypoxia are regulated by the transcription factor hypoxia-inducible factor (HIF). For exploring the function of MB in breast cancer, we employed the human cell line MDA-MB-468. Cells were grown in monolayer or as 3D multicellular spheroids, which mimic the in vivo avascular tumor architecture and physiology with a heterogeneous cell population of proliferating cells in the rim and non-cycling or necrotic cells in the core region. This central necrosis was increased after MB knockdown, indicating a role for MB in hypoxic tumor regions. In addition, MB knockdown caused higher levels of HIF-1α protein after treatment with NO, which also plays an important role in cancer cell survival. MB knockdown also led to higher reactive oxygen species (ROS) levels in the cells after treatment with H2O2. To further explore the role of MB in cell survival, we performed RNA-Seq after MB knockdown and NO treatment. 1029 differentially expressed genes (DEGs), including 45 potential HIF-1 target genes, were annotated in regulatory pathways that modulate cellular function and maintenance, cell death and survival, and carbohydrate metabolism. Of these target genes, TMEFF1, TREX2, GLUT-1, MKNK-1, and RAB8B were significantly altered. Consistently, a decreased expression of GLUT-1, MKNK-1, and RAB8B after MB knockdown was confirmed by qPCR. All three genes of interest are often up regulated in cancer and correlate with a poor clinical outcome. Thus, our data indicate that myoglobin might influence the survival of breast cancer cells, possibly due to its ROS and NO scavenging properties and could be a valuable target for cancer therapy.
Collapse
Affiliation(s)
- Theresa Quinting
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Theresa Nauth
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Andre Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Joachim Fandrey,
| | - Timm Schreiber
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
16
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|