1
|
Gong D, Lei J, He X, Hao J, Zhang F, Huang X, Gu W, Yang X, Yu J. Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids Health Dis 2024; 23:322. [PMID: 39342273 PMCID: PMC11439242 DOI: 10.1186/s12944-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
As one of the main pathogenic factors of cardiovascular and cerebrovascular diseases, the incidence of metabolic diseases such as adiposity and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing annually. It is urgent and crucial to find more therapeutic targets to treat these diseases. Mainly expressed in brown adipocytes, mitochondrial uncoupling protein 1 (UCP1) is key to the thermogenesis of classical brown adipose tissue (BAT). Furthermore, white adipose tissue (WAT) is likely to express more UCP1 and subsequently acquire the ability to undergo thermogenesis under certain stimuli. Therefore, targeting and activating UCP1 to promote increased BAT thermogenesis and browning of WAT are helpful in treating metabolic diseases, such as adiposity and MASLD. In this case, the stimuli that activate UCP1 are emerging. Therefore, we summarize the thermogenic stimuli that have activated UCP1 in recent decades, among which cold exposure is one of the stimuli first discovered to activate BAT thermogenesis. As a convenient and efficient therapy with few side effects and good metabolic benefits, physical exercise can also activate the expression of UCP1 in adipose tissue. Notably, for the first time, we have summarized and demonstrated the stimuli of traditional Chinese medicines that can activate UCP1, such as acupuncture, Chinese herbal formulas, and Chinese medicinal herbs. Moreover, pharmacological agents, functional foods, food ingredients, and the gut microbiota are also commonly associated with regulating and activating UCP1. The identification and analysis of UCP1 stimuli can greatly facilitate our understanding of adipose tissue thermogenesis, including the browning of WAT. Thus, it is more conducive to further research and therapy for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Dihong Gong
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Juanhong Lei
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xudong He
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Junjie Hao
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Fan Zhang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinya Huang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| |
Collapse
|
2
|
Haas B, Hass MDS, Voltz A, Vogel M, Walther J, Biswas A, Hass D, Pfeifer A. Sulfonylureas exert antidiabetic action on adipocytes by inhibition of PPARγ serine 273 phosphorylation. Mol Metab 2024; 85:101956. [PMID: 38735390 PMCID: PMC11112612 DOI: 10.1016/j.molmet.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVE Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. METHODS Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. RESULTS SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. CONCLUSIONS Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | - Moritz David Sebastian Hass
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany; Sonnen-Gesundheitszentrum - MVZ for Hemostaseology, Rheumathology, Endocrinology, General Medicine and Transfusion Medicine, Munich, Germany
| | - Alexander Voltz
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Julia Walther
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital, University of Bonn, Bonn, Germany
| | - Daniela Hass
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research, Neuherberg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Guo S, Li C, Lian L, Le Z, Ren Y, Liao YX, Shen J, Hou JT. Fluorescence Imaging of Diabetic Cataract-Associated Lipid Droplets in Living Cells and Patient-Derived Tissues. ACS Sens 2023; 8:3882-3891. [PMID: 37737091 DOI: 10.1021/acssensors.3c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Diabetic cataract (DC) surgery carries risks such as slow wound healing, macular edema, and progression of retinopathy and is faced with a deficiency of effective drugs. In this context, we proposed a protocol to evaluate the drug's efficacy using lipid droplets (LDs) as the marker. For this purpose, a fluorescent probe PTZ-LD for LDs detection is developed based on the phenothiazine unit. The probe displays polarity-dependent emission variations, i.e., lower polarity leading to stronger intensity. Especially, the probe exhibits photostability superior to that of Nile Red, a commercial LDs staining dye. Using the probe, the formation of LDs in DC-modeled human lens epithelial (HLE) cells is validated, and the interplay of LDs-LDs and LDs-others are investigated. Unexpectedly, lipid transfer between LDs is visualized. Moreover, the therapeutic efficacy of various drugs in DC-modeled HLE cells is assessed. Ultimately, more LDs were found in lens epithelial tissues from DC patients than in cataract tissues for the first time. We anticipate that this work can attract more attention to the important roles of LDs during DC progression.
Collapse
Affiliation(s)
- Shuai Guo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Lili Lian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Zhenmin Le
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Yueping Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Ye-Xin Liao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning 530008, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
4
|
Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Hidalgo-García L, Molina-Tijeras JA, Diez-Echave P, López-Escanez L, Rosati L, González-Lozano E, Cenis-Cifuentes L, García-García J, García F, Robles-Vera I, Romero M, Duarte J, Cenis JL, Lozano-Pérez AA, Gálvez J, Rodríguez-Cabezas ME, Rodríguez-Nogales A. The Prebiotic Effects of an Extract with Antioxidant Properties from Morus alba L. Contribute to Ameliorate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040978. [PMID: 37107352 PMCID: PMC10136151 DOI: 10.3390/antiox12040978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a global health issue, in which modifications in gut microbiota composition have a key role. Different therapeutic strategies are being developed in combination with diet and exercise, including the use of plant extracts, such as those obtained from Morus alba L. leaves. Recent studies have revealed their anti-inflammatory and antioxidant properties. The aim of the present work was to evaluate whether the beneficial effects of M. alba L. leaf extract in high-fat diet-induced obesity in mice is correlated with its impact on gut microbiota. The extract reduced body weight gain and attenuated lipid accumulation, as well as increased glucose sensitivity. These effects were associated with an amelioration of the obesity-associated inflammatory status, most probably due to the described antioxidant properties of the extract. Moreover, M. alba L. leaf extract mitigated gut dysbiosis, which was evidenced by the restoration of the Firmicutes/Bacteroidota ratio and the decrease in plasma lipopolysaccharide (LPS) levels. Specifically, the extract administration reduced Alistipes and increased Faecalibaculum abundance, these effects being correlated with the beneficial effects exerted by the extract on the obesity-associated inflammation. In conclusion, anti-obesogenic effects of M. alba L. leaf extract may be mediated through the amelioration of gut dysbiosis.
Collapse
Affiliation(s)
- María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura López-Escanez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Lucrezia Rosati
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Elena González-Lozano
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER-INFECC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
| | - Antonio Abel Lozano-Pérez
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
5
|
Sun D, Ding Z, Shen L, Yang F, Han J, Wu G. miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients. Lipids Health Dis 2021; 20:115. [PMID: 34563222 PMCID: PMC8465700 DOI: 10.1186/s12944-021-01530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
Backgrounds Cancer-associated cachexia (CAC) is a metabolic syndrome characterized by progressive depletion of adipose and muscle tissue that cannot be corrected by conventional nutritional therapy. Adipose tissue, an important form of energy storage, exhibits marked loss in the early stages of CAC, which affects quality of life and efficacy of chemotherapy. MicroRNAs (miRNAs) are a class of noncoding RNAs that widely exist in all kinds of eukaryotic cells and play regulatory roles in various biological processes. However, the role of miRNAs in adipose metabolism in CAC has rarely been reported. This study attempted to identify important miRNAs in adipose metabolism in CAC and explore their mechanism to identify a new predictive marker or therapeutic target for CAC-related adipose tissue loss (CAL). Methods In this study, miRNA sequencing was firstly used to identify differentially expressed miRNAs related to CAL and the reliability of the conclusions was verified in large population samples. Furthermore, functional experiments were performed by up and down regulating miR-410-3p in adipocytes. The binding of miR-410-3p to Insulin Receptor Substrate 1 (IRS-1) was verified by Luciferase reporter assay and functional experiments of IRS-1 were performed in adipocytes. Finally, the expression of miR-410-3p in serum exosomes was detected. Results miR-410-3p was selected as differentially expressed miRNA through screening and validation. Adipogenesis was suppressed in miR-410-3p upregulation experiment and increased in downregulation experiment. Luciferase reporter assay showed that miR-410-3p binds to 3′ non-coding region of IRS-1 and represses its expression and ultimately inhibits adipogenesis. miR-410-3p was highly expressed in serum exosomes of CAC patients, which was consistent with results in adipose tissue. Conclusions The expression of miR-410-3p was higher in subcutaneous adipose tissues and serum exosomes of CAC patients, which significantly inhibits adipogenesis and lipid accumulation. The study shows that miR-410-3p could downregulate IRS-1 and downstream adipose differentiation factors including C/EBP-a and PPAR-γ by targeting 3′ noncoding region. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01530-9.
Collapse
Affiliation(s)
- Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Fan Yang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| |
Collapse
|
6
|
Abstract
We present a detailed protocol for gene editing in adipocytes using the CRISPR-Cas technology. This protocol describes sgRNA design, preparation of lentiCRISPR-sgRNA vectors, functional validation of sgRNAs, preparation of lentiviruses, and lentiviruses transduction in adipocytes. Moreover, an optimized method of gene editing using the lentiCRISPRv2 vector expressing two sgRNAs targeting two different genes has also been described. For complete details on the use and execution of this protocol, please refer to Qiu et al. (2020).
Collapse
Affiliation(s)
- Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|