1
|
Zhou K, Xiao Y, Huang Z, Zhao Y. Photocatalyzed Aryl C-H Fluorocarbonylation with CF 2Br 2. Angew Chem Int Ed Engl 2025; 64:e202414933. [PMID: 39269673 DOI: 10.1002/anie.202414933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The use of abundant and inexpensive fluorine feedstocks to synthesize fluorinated compounds is a promising strategy that has not been extensively investigated. Dibromodifluoromethane (CF2Br2) is an inexpensive fluorine source that has rarely been used for C-H fluoroalkylation. This study reveals an iridium-catalyzed, tunable strategy for synthesizing acyl fluorides and difluorobromomethylated products using CF2Br2. To achieve the desired products, this process only requires the change of solvent (from DMSO to 1,4-dioxane) under blue LED illumination. A variety of arenes and heteroarenes with electron-donating substituents were successfully used, yielding the corresponding products in moderate to good yields. Mechanistic experiments revealed that DMSO served a dual role, functioning as both solvent and nucleophilic reagent in C-H fluorocarbonylation.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuheng Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
2
|
Pliego JR. Theoretical design of new ligands to boost reaction rate and selectivity in palladium-catalyzed aromatic fluorination. J Comput Chem 2025; 46:e27513. [PMID: 39350669 DOI: 10.1002/jcc.27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025]
Abstract
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2-3 kcal mol-1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| |
Collapse
|
3
|
Sheikhaleslami S, Sperry J. Mechanochemical Radical Transformations in Organic Synthesis. Chemistry 2025; 31:e202403833. [PMID: 39434622 DOI: 10.1002/chem.202403833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Organic synthesis has historically relied on solution-phase, polar transformations to forge new bonds. However, this paradigm is evolving, propelled by the rapid evolution of radical chemistry. Additionally, organic synthesis is witnessing a simultaneous resurgence in mechanochemistry, the formation of new bonds in the solid-state, further contributing to this shift in the status quo. The aforementioned advances in radical chemistry have predominantly occurred in the solution phase, while the majority of mechanochemical synthesis advances feature polar transformations. Herein, we discuss a rapidly advancing area of organic synthesis: mechanochemical radical reactions. Solid-state radical reactions offer improved green chemistry metrics, better reaction outcomes, and access to intermediates and products that are difficult or impossible to reach in solution. This review explores these reactions in the context of small molecule synthesis, from early findings to the current state-of-the-art, underscoring the pivotal role solid-state radical reactions are likely to play in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Sahra Sheikhaleslami
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| |
Collapse
|
4
|
Aslam M, Akhtar MS, Lim HN, Seo JH, Lee YR. Recent advances in the transformation of maleimides via annulation. Org Biomol Chem 2025; 23:269-291. [PMID: 39545834 DOI: 10.1039/d4ob01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the past five years, maleimide scaffolds have gained considerable attention in organic synthesis for their role in forming cyclized molecules through annulation and C-H activation. As versatile and reactive coupling agents, maleimides have enabled the efficient synthesis of various cyclized products, including annulation, benzannulation, cycloaddition, and spirocyclization, with applications in medicinal chemistry, drug discovery, and materials science. Despite the extensive study of maleimide chemistry, certain reactions-such as cycloaddition-based annulation, photoannulation, and electrochemical transformations-remain underexplored despite their promising potential in the pharmaceutical and chemical industries. Recent advancements, such as photocatalysis and electrochemical methods, have expanded the utility of maleimides, providing more sustainable and selective approaches for synthesizing complex molecules. This review compiles research published between 2019 and 2024, highlighting the substrate scope, reaction diversity, and industrial relevance of maleimide-based annulation strategies. Additionally, we discuss emerging trends and future directions in maleimide chemistry, exploring opportunities for novel reaction pathways and broader applications in synthetic biology and materials science.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
He K, Yan Y, Feng S, Wang P, Zhang Z, Wang N. Two fluorinases prioritized from protein families of fluorinase, SAM-dependent chlorinase and hydroxide adenosyltransferase. Org Biomol Chem 2025; 23:318-322. [PMID: 39589401 DOI: 10.1039/d4ob01638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Fluorinases represent the only known biological catalysts capable of forming carbon-fluorine bonds, but their slow catalytic rate limits their broader application. In this study, two fluorinases, FlASbac and FlAPbac, were identified from a pool of 12 718 nonredundant proteins using a genome-mining approach, with FlASbac showing high catalytic activity. Both newly identified fluorinases contain a Phe50 residue in place of the Trp50 typically found in fluorinases. Structural and mutagenesis studies revealed that the Trp50 or Phe50 residue at this position is crucial for fluorinase activity. This work highlights the utility of genomic enzymology in expanding the repertoire of biocatalysts for fluorination chemistry.
Collapse
Affiliation(s)
- Kai He
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
| | - Yue Yan
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China
| | - Shuting Feng
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
| | - Pinmei Wang
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
| | - Zhizhen Zhang
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
| | - Nan Wang
- Ocean College, Zhejiang University, 1 Zheda Rd., Zhoushan 316021, China.
| |
Collapse
|
6
|
Wackett LP. Confronting PFAS persistence: enzymes catalyzing C-F bond cleavage. Trends Biochem Sci 2025; 50:71-83. [PMID: 39643519 DOI: 10.1016/j.tibs.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Studies of enzymes catalyzing carbon-fluorine (C-F) bond cleavage have focused largely on a limited number of native microbial hydrolases that are reactive with the natural product fluoroacetate. Driven by widespread interest in biodegrading commercial fluorinated compounds, many of which are known as per- and polyfluorinated alkyl substances (PFAS), it is necessary to identify and engineer new enzymes. For example, some hydrolases react with -CF2- moieties, a common functionality in PFAS. Additional enzymatic C-F cleaving mechanisms catalyzed by reductases, lyases, and oxygenases have been identified via screening. Screening and evolving PFAS defluorination in bacteria is inhibited by the obligate release of toxic fluoride from C-F cleavage. Engineering greater fluoride tolerance in bacteria is a problem that must be solved in tandem with enzyme improvement.
Collapse
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
El-Houseiny W, Basher AW, Mahmoud YK, Bayoumi Y, Abdel-Warith AWA, Younis EM, Davies SJ, Arisha AH, Abd-Elhakim YM, Assayed MEM. Mitigation of sodium fluoride-induced growth inhibition, immunosuppression, hepatorenal damage, and dysregulation of oxidative stress, apoptosis, and inflammation-related genes by dietary artichoke (Cynara scolymus) leaf extract in Oreochromis niloticus. Comp Biochem Physiol B Biochem Mol Biol 2024:111068. [PMID: 39736455 DOI: 10.1016/j.cbpb.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.1 mg/L waterborne FLR, and a group receiving both CSLE and FLR. Fish exposed to FLR exhibited slower growth rates and poorer feed conversion compared to the control group. They also displayed signs of anemia, leukopenia, and elevated serum levels of renal injury indicators and liver enzymes. Consistent with a decrease in both non-enzymatic and enzymatic antioxidants, higher levels of hepatic lipid peroxidation products were observed. Exposure to FLR resulted in decreased serum lysozyme activity, nitric oxide, complement 3, IgM, total protein, globulin, and albumin levels. FLR induced multiple pathological perturbations in the spleen, liver, and kidneys, and increased the mRNA expression of splenic tumor necrosis factor-alpha, heat shock protein 70, interleukin-1 beta, tumor protein p53, and cysteine-aspartic acid protease 3 while reducing superoxide dismutase and catalase genes expressions. However, the majority of FLR adverse effects were significantly reduced by adding 300 mg CSLE/ kg diet. Adding CSLE to O. niloticus' diet may reduce FLR's negative effects, making it a beneficial aquafeed.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Asmaa W Basher
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasmin Bayoumi
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University Zagazig, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Mohamed Ezzat M Assayed
- Department of Forensic Medicine & Toxicology, College of Veterinary Medicine, University of Sadat City, Sadat city, Egypt
| |
Collapse
|
8
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2024; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
9
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Nonheme Mononuclear and Dinuclear Iron(II) and Iron(III) Fluoride Complexes and Their Fluorine Radical Transfer Reactivity. Inorg Chem 2024. [PMID: 39729544 DOI: 10.1021/acs.inorgchem.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The nonheme iron(II) complexes containing a fluoride anion, FeII(BNPAPh2O)(F) (1) and [FeII(BNPAPh2OH)(F)(THF)](BF4) (2), were synthesized and structurally characterized. Addition of dioxygen to either 1 or 2 led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-F)]+ (4), which was characterized by single-crystal X-ray diffraction, 1H NMR, and elemental analysis. An iron(II)(iodide) complex, FeII(BNPAPh2O)(I) (3), was prepared and reacted with O2 to give the mononuclear complex cis-FeIII(BNPAPh2O)(OH)(I) (5). Addition of excess fluoride to 5 led to the formation of the oxo-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-O)] (6), while the mononuclear iron(III)(fluoride) complex cis-FeIII(BNPAPh2O)(F)(Cl) (7) was prepared from the addition of excess F- to FeIII(BNPAPh2O)Cl2. The dinuclear complexes 4 and 6 were unreactive to fluorine radical transfer, but mononuclear 7 reacts with the radical substrate (p-MeO-C6H4)3C• to give the fluorine radical transfer products FeII(BNPAPh2O)(Cl) and (p-OMe-C6H4)3CF. These results show that a mononuclear FeIII(F) complex is capable of mediating fluorine radical transfer, even in the presence of second coordination sphere hydrogen bonds to the F- ligand. These findings are placed in context with what is known about the nonheme iron halogenases and related synthetic catalysts regarding their ability, or lack thereof, to mediate fluorine radical transfer reactions.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Li N, Li C, Zhou Q, Zhang X, Deng Z, Jiang ZX, Yang Z. General access to furan-substituted gem-difluoroalkenes enabled by PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene. Chem Sci 2024:d4sc08247h. [PMID: 39720138 PMCID: PMC11664252 DOI: 10.1039/d4sc08247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Replacement of a carbonyl group with fluorinated bioisostere (e.g., CF2[double bond, length as m-dash]C) has been adopted as a key tactical strategy in drug design and development, which typically improves potency and modulates lipophilicity while maintaining biological activity. Consequently, new gem-difluoroalkenation reactions have undoubtedly accelerated this shift, and conceptually innovative practices would be of great benefit to medicinal chemists. Here we describe an expeditous protocol for the direct assembly of furan-substituted gem-difluoroalkenes via PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene. In this multi-step tandem reaction process, the furan ring and the gem-difluorovinyl group are constructed simultaneously in an efficient manner. These products can serve as bioisosteres of the α-carbonyl furan core, which is an important scaffold present in natural products and drug candidates. The broad generality and practicality of this method for late-stage modification of bioactive molecules, gram-scale synthesis and versatile derivatisation of products has been described. Biological activity evaluation showed that the gem-difluoroalkene skeleton exhibited dramatic antitumor activity.
Collapse
Affiliation(s)
- Na Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Chenghui Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Qianying Zhou
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Xin Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Zhigang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
11
|
Liang C, Liu ZQ, Lin M, Huang XM, Xiong SQ, Zhang X, Li QH, Liu TL. Rhodium-Catalyzed Synthesis of Trifluoromethyl-Containing Allylic Alcohols Via Z-Alkenyl Transfer with High Stereochemistry Retention. Org Lett 2024; 26:10665-10670. [PMID: 39651549 DOI: 10.1021/acs.orglett.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, we report the rhodium-catalyzed Z-alkenyl transfer from tertiary allylic alcohols to aryl trifluoromethyl ketones, which provided an efficient way of preparation of trifluoromethyl-containing Z-allylic alcohols via β-Z-alkenyl elimination. The key Z-alkenyl-rhodium species were generated with a high degree of stereochemical retention. This reaction featured a broad substrate scope and good functional tolerance and would offer a fascinating approach for the synthesis of Z-alkenes.
Collapse
Affiliation(s)
- Cheng Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue-Mei Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Liu L, Jiang Q, Tang L, Liu C, Wang Y, Wu F, Wu J. Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles. Org Lett 2024; 26:10833-10839. [PMID: 39656094 DOI: 10.1021/acs.orglett.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of chiral tetrasubstituted α-fluoro-α-cyano carbonyl compounds remains a key challenge in synthetic organic chemistry because of their popularity in multiple disciplines. In this paper, we report the copper-catalyzed asymmetric fluorinated tertiary radical cyanation reaction of cyclic α-iodo-α-fluoroindanones with TMSCN to achieve chiral nitriles with carbon-fluorine quaternary stereogenic centers. Thus, an array of optically active tetrasubstituted monofluoroacyl nitriles were synthesized with high reaction efficiency and excellent enantioselectivities (up to 91% yield, 99% ee). Moreover, mechanistic investigations, including experiments, were conducted to clarify the reaction pathway and stereochemical outcomes.
Collapse
Affiliation(s)
- Li Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Qi Jiang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Long Tang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chao Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
13
|
Kawai K, Ikawa S, Hoshiya N, Kishikawa Y, Shibata N. Synthesis of Ngai Reagent and Longer Carbon Chain Variants for Perfluoroalkoxylations. Org Lett 2024; 26:11011-11016. [PMID: 39636164 DOI: 10.1021/acs.orglett.4c04170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We present a straightforward method for the synthesis of Ngai trifluoromethoxy reagent and longer carbon chain variants, thereby expanding the range of options for perfluoroalkoxylation reactions. Utilizing cost-effective sodium perfluoroalkane sulfinates (RfSO2Na) and N-hydroxylamines, we achieved efficient oxidative cross-coupling reactions facilitated by cerium(IV) ammonium nitrate (CAN) without the need for transition-metal catalysts. The methodology proved effective not only for the synthesis of Ngai-type radical perfluoroalkoxylation reagents but also Qing-type nucleophilic perfluoroalkoxylation reagents.
Collapse
Affiliation(s)
- Koki Kawai
- Department of Nanopharmaceutical Sciences, and Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Sota Ikawa
- Department of Nanopharmaceutical Sciences, and Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Naoyuki Hoshiya
- Technology and Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Yosuke Kishikawa
- Technology and Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, and Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
14
|
Nisler J. Beyond expectations: the development and biological activity of cytokinin oxidase/dehydrogenase inhibitors. Biochem Soc Trans 2024; 52:2297-2306. [PMID: 39508392 DOI: 10.1042/bst20231561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cytokinins are one of the main groups of plant hormones that regulate growth and development of plants. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that rapidly and irreversibly degrades cytokinins and thus directly affects their concentration and physiological effect. Genetically modified plants with reduced CKX activity in the shoot, i.e. with a higher concentration of cytokinins, showed e.g. increased tolerance to drought stress, formed larger inflorescences and had higher grain yield. For these reasons, chemical compounds capable of inhibiting the CKX activity (CKX inhibitors) were sought. First, they were identified among strong synthetic cytokinins, but their inhibitory activity was low. The trend has been to develop potent CKX inhibitors with minimal intrinsic cytokinin activity in the hope of avoiding the negative effect of cytokinins on root growth. Cloning CKX, production of key recombinant enzymes from Arabidopsis (AtCKX2) and maize (ZmCKX1 and ZmCKX4a), development of screening bioassays and progress in X-ray crystallography and synthetic organic chemistry led to extensive progress in the development of these compounds. Currently, the most suitable CKX inhibitors are seeking their application in research and the commercial sphere in two main areas - plant tissue cultures and agriculture. The key milestones that preceded it are summarized in this review.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
15
|
Tang L, Jia F, Yu R, Zhang L, Zhou Q. Visible light-driven and substrate-promoted alkenyltrifluoromethylation of alkenes to synthesize CF 3-functionalized 1,4-naphthoquinones. Org Biomol Chem 2024; 23:151-156. [PMID: 39513995 DOI: 10.1039/d4ob01585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first example of the visible light-driven and substrate-promoted three-component alkenyltrifluoromethylation of alkenes is developed. This approach uses easily available alkenes, 2-arylamino-1,4-naphthoquinones and Togni reagent as the reactants, and describes good functionality tolerance. The reaction offers a precise synthesis of valuable CF3-functionalized 1,4-naphthoquinones and can be applied in late-stage modification of natural products and pharmaceuticals. Experimental results imply that bifunctional 2-arylamino-1,4-naphthoquinones serve as both substrates and catalysts. In terms of this autocatalytic system, the protocol enables a straightforward intermolecular difunctionalization of alkenes under visible light irradiation without external catalysts.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
- Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang 464000, China
| | - Fengjuan Jia
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ruijun Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Lufang Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
16
|
Trifonov AL, Dilman AD. Interaction of Difluorocarbene with the Thiocyanate Anion: Access to a Silicon Reagent Bearing the Isothiocyanate Group. Org Lett 2024; 26:10589-10593. [PMID: 39588677 DOI: 10.1021/acs.orglett.4c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The reaction between (bromodifluoromethyl)trimethylsilane (TMSCF2Br) and potassium thiocyanate providing TMSCF2NCS is described. The process involves the interaction of difluorocarbene with the nitrogen atom of the thiocyanate anion. The obtained silicon reagent served as a source of the fluorinated group and difluorocarbene in the reaction with N-alkyl imines, affording 2-(difluoromethylthio)-4-fluoroimidazoles.
Collapse
Affiliation(s)
- Alexey L Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
17
|
Shen J, Chen M, Du X. Photoredox-Catalyzed Regioselective 1,3-Alkoxypyridylation of gem-Difluorocyclopropanes. Org Lett 2024; 26:10628-10633. [PMID: 39631167 DOI: 10.1021/acs.orglett.4c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Difluoromethylene and pyridine cores are very important structural units in medicinal chemistry. Herein, we report the development of photoredox-catalyzed ring-opening and 1,3-alkoxypyridylation of gem-difluorinated cyclopropanes using 4-cyanopyrines and alcohols, employing cyclopropane radical cations as the key intermediate. The reaction exhibits high regioselectivity under mild conditions and can also be practiced on gram-scale synthesis, telescoped reaction, and late-stage functionalization of biological molecules.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Meijun Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaozheng Du
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Melnykov KP, Liashuk OS, Holovach S, Shatnia V, Horbenko A, Lesyk D, Melnyk V, Skrypnik D, Beshtynarska A, Borysko P, Viniichuk O, Grygorenko OO. Physicochemical and Biological Evaluation of gem-Difluorinated Saturated Oxygen Heterocycles as Bioisosteres for Drug Discovery. Chemistry 2024:e202404390. [PMID: 39660537 DOI: 10.1002/chem.202404390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
A comprehensive study on the physicochemical properties of gem-fluorinated O-heterocyclic substituents is reported. Systematic additive effects of introducing O- and gem-CF2 group introduction on acidic properties (pKa) of the corresponding carboxylic acids/protonated primary amines were demonstrated. The impact of the O/CF2 moieties on lipophilicity (LogP) was found to be complex; significant mutual influence of the corresponding polar moieties governed the compound's overall properties in this case. Biological evaluation of MAPK kinase inhibitors incorporating the title substituents demonstrated their utility as promising fragments for bioisosteric replacements in drug discovery campaigns.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Serhii Holovach
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Valeriia Shatnia
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Avenue 37, Kyїv, 03056, Ukraine
| | - Artur Horbenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- V. I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akademik Palladin Street 32/34, Kyїv, 03142, Ukraine
| | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Varvara Melnyk
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Daniil Skrypnik
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Anna Beshtynarska
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr Viniichuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
19
|
de Giovanetti M, Cormanich RA, Sauer SPA. On the Performance of Second-Order Polarization Propagator Methods in the Calculation of 1JFC and nJFH NMR Spin-Spin Coupling Constants. J Chem Theory Comput 2024; 20:10453-10467. [PMID: 39611783 DOI: 10.1021/acs.jctc.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This study evaluates the performance of doubles-corrected random phase approximation (RPA) and higher random phase approximation (HRPA) approaches in predicting nuclear magnetic resonance (NMR) coupling constants involving fluorine. Their performance is benchmarked against experimental data and compared with that of higher-level theoretical methods, specifically second-order polarization propagator (SOPPA) and SOPPA(CCSD). Additionally, we discuss their performance relative to density functional theory (DFT). We find that RPA(D) is severely constrained by (near) triplet instabilities, while HRPA(D) demonstrates markedly improved stability. Statistical analysis reveals stronger patterns for carbon-fluorine couplings across the methods and systems investigated compared with fluorine-hydrogen couplings. While SOPPA-based methodologies prove to be superior in accuracy, HRPA(D) shows promising performance in reducing the computational burden of these calculations, albeit with a tendency to underestimate the coupling strength. These findings highlight the potential of HRPA(D) as a practical alternative to SOPPA methods, even for such difficult properties as NMR spin-spin coupling constants involving fluorine, emphasizing its role in improving predictive accuracy and efficiency across diverse chemical environments.
Collapse
Affiliation(s)
- Marinella de Giovanetti
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Rodrigo A Cormanich
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
20
|
Orenibi E, Illés Á, Sandil S, Endrédi A, Szekeres J, Dobosy P, Záray G. Temporal and spatial distribution of inorganic fluoride, total adsorbable organofluorine, PFOA and PFOS concentrations in the Hungarian section of the Danube River. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136820. [PMID: 39672066 DOI: 10.1016/j.jhazmat.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
The existing technologies in municipal wastewater treatment plants are ineffective in eliminating persistent fluorine-containing contaminants. At the same time, there is an increasing demand for novel organofluorine compounds, particularly in the production of lithium-ion batteries, as well as in the agrochemical and pharmaceutical sectors for more efficient ingredients. This implies that we must account for ongoing changes in the fluorine levels within riverine environments. To determine the fluorine concentration in the water phase of rivers, it is essential to measure both inorganic fluoride and total organofluorine concentrations. These analytes were measured in water samples collected monthly from twelve locations along the Hungarian section of the Danube River during the period from July to December 2023, applying ion-chromatography and combustion ion-chromatography. The concentration of inorganic fluoride ranged from 28 to 76 µg/L, with a median of 45.3 µg/L. The total adsorbable organofluorine concentrations were between 0.22 and 12.5 µg/L, with a median of 2.43 µg/L. To assess the impact of restrictions on the use of PFOA and PFOS compounds, these substances were quantified using a UHPLC-Q-TOF-MS system. A comparison of our data with previously published concentrations in the Danube River reveals a decreasing tendency, justifying the restricted use of these chemicals.
Collapse
Affiliation(s)
- Esther Orenibi
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary; Doctoral School of Environmental Science, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Illés
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Sirat Sandil
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Anett Endrédi
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary
| | - József Szekeres
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Gyula Záray
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
21
|
Wang Q, Ruan ZS, Wang HP, Liang RX, Hu YY, Jia YX. Cobalt-Catalyzed Intramolecular Enantioselective Reductive Heck Reaction toward the Synthesis of Chiral 3-Trifluoromethylated Oxindoles. J Org Chem 2024; 89:17133-17140. [PMID: 39561380 DOI: 10.1021/acs.joc.4c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Herein, a cobalt-catalyzed intramolecular enantioselective reductive Heck reaction is disclosed. Starting from N-ortho-iodoaryl-2-(trifluoromethyl)acrylamides, a plethora of chiral oxindoles bearing trifluoromethylated quaternary stereogenic centers at the C3-position are achieved in moderate to good yields (up to 88% yield) and good to excellent enantioselectivities (up to 94% ee) by employing zinc/silane as reducing agent. Other than the trifluoromethyl group, a number of chiral oxindoles bearing alkyl, aryl, and ester groups at C3-position were also obtained albeit in relatively lower enantioselectivities (68-78% ee).
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
| | - Hong-Peng Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
| | - Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
22
|
Chen X, Zhou XY. Site-Specific Dehydrogenative Hydroxyfluoroalkylation of Indoles with Hexafluoroisopropanol. J Org Chem 2024; 89:17860-17865. [PMID: 39577005 DOI: 10.1021/acs.joc.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
An efficient and convenient method for the synthesis of C3-hydroxytrifluoroalkylated indoles and pyrroles was described in this paper. The copper-catalyst-free site-specific cross-dehydrogenative coupling reaction of various indoles and pyrroles with hexafluoroisopropanol proceeded smoothly by using MnO2 as oxidant to furnish a hydroxytrifluoroalkylated electron-rich N-heterocycle in satisfactory to excellent yields. Various groups, including the synthetically useful functional groups Cl, NO2, and CN, were tolerated well. The mechanistic study revealed that a radical pathway accommodated the formation of a hexafluoroacetone intermediate.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| |
Collapse
|
23
|
Kotani S, Asano T, Arae S, Sugiura M, Nakajima M. Mechanistic Investigations of Chiral Lithium Binaphtholate Catalysis for Asymmetric Aldol-Tishchenko Reaction of α-Fluoroarylketones. J Org Chem 2024; 89:17101-17114. [PMID: 39513763 DOI: 10.1021/acs.joc.4c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In this study, we analyzed the asymmetric aldol-Tishchenko reaction of α-fluoroarylketones with aldehydes in the presence of chiral lithium binaphtholate, which was readily prepared from a chiral BINOL derivative and lithium tert-butoxide. This tandem reaction afforded enantiomerically enriched 2-fluoro-1,3-diols with three contiguous stereogenic centers in high yield and with high diastereo- and enantioselectivities. Moreover, mechanistic investigations of the lithium binaphtholate-catalyzed enantioselective aldol-Tishchenko reaction were performed based on the kinetic isotope effect and computational analyses.
Collapse
Affiliation(s)
- Shunsuke Kotani
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toshifumi Asano
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sachie Arae
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Nakajima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
24
|
Jiang H, Zhao WW, Wang X, Zhang H, Zheng SC, Zhao X. Rh(I)/Sulfoxide-Imine-Olefin Complex Catalyzed Enantioselective Allylic Alkylation of 2-Fluoromalonate: Synthesis of Chiral α-Fluorolactone Bearing Vicinal Stereogenic Centers. Chemistry 2024; 30:e202402875. [PMID: 39148303 DOI: 10.1002/chem.202402875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Highly enantioselective Rh-catalyzed allylic substitution of the racemic branched allylic substrates with 2-fluoromalonate was realized enabled by a novel chiral sulfoxide-imine-olefin ligand under mild reaction conditions. The utilization of CuSO4 is beneficial for improving the enantioselectivity. Notably, the chiral fluoro-containing allyl products can be employed in a selective cyclic esterification to form chiral α-fluorolactone bearing vicinal stereogenic centers.
Collapse
Affiliation(s)
- Haibin Jiang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Wen-Wen Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Xiaolin Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Hongbo Zhang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Xiaoming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| |
Collapse
|
25
|
Ghaffari B, L T N Porto L, Johnson N, Ovens JS, Ehm C, Baker RT. Copper-Mediated -CF(OCF 3)(CF 2H) Transfer to Organic Electrophiles. ACS ORGANIC & INORGANIC AU 2024; 4:628-639. [PMID: 39649996 PMCID: PMC11621958 DOI: 10.1021/acsorginorgau.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 12/11/2024]
Abstract
The integration of fluorine into medicinal compounds has become a widely used strategy to improve the biochemical and therapeutic properties of drugs. Inclusion of -CF2H and -OCF3 fluoroalkyl groups has garnered attention due to their bioisosteric properties, enhanced lipophilicity, and potential hydrogen-bonding capability in bioactive substances. In this study, we prepared a series of stable Cu[CF(OCF3)(CF2H)]L n complexes by insertion of commercially available perfluoro(methyl vinyl ether), CF2=CF(OCF3), into Cu-H bonds derived from Stryker's reagent, [CuH(PPh3)]6, using ancillary ligands L. Notably, certain of these complexes effectively transfer the fluoroalkyl group to aroyl chlorides. Through reaction optimization and computational analysis, we identified dimethylsulfoxide as a pivotal coligand, playing a distinctive role in enabling the fluoroalkylation of a range of aroyl chlorides and aryl iodides. The latter also benefits from addition of CuBr to abstract PPh3, generating solvent-stabilized Cu[CF(OCF3)(CF2H)]. These methodologies allow for the introduction of geminal -OCF3 and -CF2H groups in a single transformation.
Collapse
Affiliation(s)
- Behnaz Ghaffari
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Luana L T N Porto
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Nicole Johnson
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S Ovens
- Faculty of Science, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Universitàdi Napoli Federico II, Via Cintia 80126, Napoli, Italy
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
26
|
Huang R, Liu Z, Pan Y, Ma Z, Wang H, Wan B, Li J, Chang J. Mechanistic insight into the neurodevelopmental toxicity of the novel pesticide pyrifluquinazon (PFQ) and its major metabolite in early-life stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125469. [PMID: 39643230 DOI: 10.1016/j.envpol.2024.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Pyrifluquinazon (PFQ), a novel insecticide containing a heptafluoroisopropyl moiety, has seen increasing use. However, limited research has been conducted on the toxicological effects and mechanisms of PFQ in aquatic organisms. To investigate the toxicity and underlying mechanisms of PFQ and its primary metabolite dPFQ in aquatic organisms, morphological, behavioral, hormonal, multi-omics analyses, and molecular docking studies were conducted on zebrafish larvae after exposure. The results showed that both PFQ and dPFQ induced developmental abnormalities, behavioral impairment, hormonal disruptions, and alterations in neurologically related metabolites and gene expression in early-stage zebrafish. Notably, delayed retinal vascular development was observed, which is also likely linked to the neurodevelopmental toxicity. Subsequently, identification and relative quantification of PFQ metabolites suggested that its toxicity might be primarily attributed to dPFQ. Finally, an Adverse Outcome Pathway (AOP) was proposed, initiating with the binding of dPFQ to the TRPV4 protein and ultimately leading to neurodevelopmental toxicity. This study delineated the neurodevelopmental toxicity of PFQ and its toxicological mechanisms in zebrafish, emphasizing the hazards posed by pesticide metabolites to non-target organisms and highlighting inherent limitations of extrapolating in vitro toxicity experiments.
Collapse
Affiliation(s)
- Rui Huang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zijun Liu
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yunrui Pan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zheng Ma
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
27
|
Reheim MAMA, Ghazal B, Abdelhamid SA, Elhagali GAM, El-Gaby MSA. Fluorinated Sulfonamides: Synthesis, Characterization, In Silico, Molecular Docking, ADME, DFT Predictions, and Structure-Activity Relationships, as Well as Assessments of Antimicrobial and Antioxidant Activities. Drug Dev Res 2024; 85:e70029. [PMID: 39676585 DOI: 10.1002/ddr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
The design and synthesis of unique two series of fluorinated sulfonamides 3a-f and 5a-g utilizing nucleophilic aromatic substitution reactions of tetrafluorophthalonitrile 1 with various sulfonamides 2 under a variety of different reactions conditions were the key goals of the current research. The chemical composition of the generated products has been investigated via mass spectroscopy, 1HNMR, 13CNMR, infrared, and elemental analyzes. Antimicrobial studies were conducted in vitro to evaluate the activity of all new synthesized compounds against resistant strains. The first series showed high potency in very low concentrations. All compounds were studied against DPPH Radical Scavenging Activity and the other series showed high activity even in low molar ratio. In silico molecular docking was used to investigate the potential binding pathways for different receptors: dihydroprotien synthase protein (ID Code: 1AJ0) as an antibacterial and EGFRWT co-crystallized with erlotinib [PDB ID code 1m17]. Furthermore, synthesized compounds with good ADME predictions to the Lipinski rule of five demonstrated that the recently synthesized compounds had high drug-likeness qualities when the physicochemical parameter for the most powerful novel candidates was determined. Moreover, the DFT/B3LYP method functionalized with a 6-31G (d, p) basis set was employed to calculate quantum parameters, MEP analysis, HUMO, and LUMO.
Collapse
Affiliation(s)
| | - Basma Ghazal
- Organometallic and Organometalloid Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Gameel A M Elhagali
- Chemistry Department, Faculty of Science (Boys), Nasr City, Al-Azhar University, Cairo, Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Nasr City, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
28
|
O'Connor MR, Thoma CJ, Dodge AG, Wackett LP. Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution. Microb Biotechnol 2024; 17:e70066. [PMID: 39724398 DOI: 10.1111/1751-7915.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth. Adaptive evolution was performed for each recombinant strain by serial transfer. Both strains adapted to show a much shorter lag and a higher growth yield. The observed adaptation occurred rapidly and reproducibly, within 50 generations each time. After adaption, growth with 50-70 mM α-fluorophenylacetic acid was significantly faster with more fluoride release than a preadapted culture due to larger cell populations. Genomic sequencing of both pre- and postadapted strain pairs revealed decreases in the defluorinase gene content. With both defluorinases, adaption produced a 56%-57% decrease in the plasmid copy number. Additionally, during adaption of the strain expressing the faster defluorinase, two plasmids were present: the original and a derivative in which the defluorinase gene was deleted. An examination of the enzyme rates in the pathway suggested that the defluorinase rate was concurrently optimised for pathway flux and minimising fluoride toxicity. The rapid alteration of plasmid copy number and mutation was consistent with other studies on microbial responses to stresses such as antibiotics. The data presented here support the idea that fluoride stress is significant during the biodegradation of organofluorine compounds and suggest engineered strains will be under strong selective pressure to decrease fluoride stress.
Collapse
Affiliation(s)
- Madeline R O'Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA
| | - Calvin J Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA
| | - Anthony G Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA
| |
Collapse
|
29
|
Wang R, Jin P, Yang G, Fan Y, Bai Z, Huang D, Wang KH, Wang J, Hu Y. Synthesis of 3,5-bis(fluoroalkyl)pyrazoles/pyrazolines via [3 + 2] cycloaddition of di/trifluoroacetohydrazonoyl bromides and trifluoromethyl-substituted alkenes. Org Biomol Chem 2024. [PMID: 39585166 DOI: 10.1039/d4ob01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
An efficient [3 + 2] cycloaddition reaction of difluoromethyl or trifluoromethyl hydrazonoyl bromides with trifluoromethyl-substituted alkenes was investigated to produce a variety of 3,5-bis(fluoroalkyl)pyrazoles/pyrazolines in moderate to good yields. This protocol features obvious advantages such as easily available and stable substrates, step economy, gram-scalability and simple operation, providing a novel and practical method for the preparation of 3,5-bis(fluoroalkyl)pyrazoles/pyrazolines.
Collapse
Affiliation(s)
- Ruikang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Peng Jin
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Gaowang Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Ying Fan
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Zuyu Bai
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
30
|
Ding CL, Li H, Zhong Y, Lin Y, Ye KY. Hypervalent iodine catalysis enabled iterative multi-fluorination: not just a simple alternative for the electrochemical approach. Chem Commun (Camb) 2024; 60:13738-13741. [PMID: 39484818 DOI: 10.1039/d4cc04641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unlike the well-established fluoroalkylation, the direct incorporation of multiple fluorine atoms into small molecules via iterative fluorinations has been much less investigated. Herein, we report a hypervalent iodine catalytically selective multi-fluorination in which the fluorination degree is controlled by the delicate balance between the HF/amine ratios. The pros and cons of hypervalent iodine catalysis and the previously established electrochemical approach in the iterative multi-fluorinations are also provided.
Collapse
Affiliation(s)
- Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hechen Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yi Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
31
|
Haring M, Balanna K, Cheng Q, Lammert J, Studer A. Formal meta-C-H-Fluorination of Pyridines and Isoquinolines through Dearomatized Oxazinopyridine Intermediates. J Am Chem Soc 2024; 146:30758-30763. [PMID: 39485880 DOI: 10.1021/jacs.4c11759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Organofluorine compounds, including fluorinated pyridines and isoquinolines, play a crucial role in pharmaceuticals, agrochemicals, and materials science. However, step-economic selective C-H-functionalization to access these fluorinated azaarenes is still underexplored, with selective meta-C-H-fluorination proving to be especially elusive. Here we present a practical method for formal meta-C-H-fluorination of pyridines and isoquinolines. By applying an oxazinoazaarene-based temporary pyridine dearomatization strategy with Selectfluor as an electrophilic F-source, fluorination of pyridines was achieved with exclusive C3-selectivity in moderate to good yields. The same strategy can also be applied to the formal meta-C-H-fluorination of isoquinolines. Late-stage-functionalization of drugs, drug precursors, and ligands as well as a large-scale one-pot dearomatization-fluorination-rearomatization reaction further demonstrate the synthetic utility of this approach.
Collapse
Affiliation(s)
- Malte Haring
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Kuruva Balanna
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. of China
| | - Jessika Lammert
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
32
|
Guo YY, Tian ZH, Zhang L, Han YC, Zhang BB, Xing Q, Shao T, Liu Y, Jiang Z. Photobiocatalytic Platform for the Efficient Enantio-Divergent Synthesis of β-Fluoromethylated Ketones. J Am Chem Soc 2024; 146:31012-31020. [PMID: 39473165 DOI: 10.1021/jacs.4c10441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
β-Fluoromethyl (CH2F, CHF2, and CF3)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones. Our method highlights substrate-type diversity, excellent enantioselectivity, enzymatic enantio-divergent synthesis, as well as a dicyanopyrazine (DPZ)-type photosensitizer for biocompatible olefin E/Z isomerization in enzymatic stereoconvergent olefin asymmetric reduction, thereby providing a general photobiocatalytic solution to diverse β-fluoromethylated chiral ketones.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Linghong Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bei-Bei Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Xing
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tianju Shao
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiyong Jiang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
33
|
Kabumoto Y, Yoshimoto E, Xiaohuan B, Morita M, Yasui M, Yamada S, Konno T. Access to optically active tetrafluoroethylenated amines based on [1,3]-proton shift reaction. Beilstein J Org Chem 2024; 20:2776-2783. [PMID: 39498444 PMCID: PMC11533114 DOI: 10.3762/bjoc.20.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024] Open
Abstract
Treatment of various (R)-N-(2,2,3,3-tetrafluoropent-4-en-1-ylidene)-1-phenylethylamine derivatives with 2.4 equiv of DBU in toluene at room temperature to 50 °C for 24 h led to a smooth [1,3]-proton shift reaction with a high chirality transfer, affording the corresponding rearranged products in acceptable yields. Without purification, these products were subjected to acid hydrolysis and the subsequent N-Cbz protection, providing the optically active tetrafluoroethylenated amides in moderate three-step yields.
Collapse
Affiliation(s)
- Yuta Kabumoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eiichiro Yoshimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Bing Xiaohuan
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masato Morita
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Motohiro Yasui
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
34
|
Ortalli S, Ford J, Szpera R, Stoessel B, Trabanco AA, Tredwell M, Gouverneur V. 18F-Difluoromethyl(ene) Motifs via Oxidative Fluorodecarboxylation with [ 18F]Fluoride. Org Lett 2024; 26:9368-9372. [PMID: 39441191 PMCID: PMC11536415 DOI: 10.1021/acs.orglett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Herein, we report that α-fluorocarboxylic acids undergo manganese-mediated oxidative 18F-fluorodecarboxylation with [18F]fluoride affording biologically relevant 18F-difluoromethyl(ene)-containing molecules. This no-carrier added process provides a solution to a known challenge in radiochemistry and expands the radiochemical space available for positron emission tomography (PET) ligand discovery. Scalability on a fully automated radiosynthetic platform is exemplified with the production of [18F]4,4-difluoropiperidine that, we demonstrate, is amenable to postlabeling functionalization including N-heteroarylation and amide as well as sulfonamide bond formation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert Szpera
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Barbara Stoessel
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales
Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
35
|
Ware A, Hess S, Gligor D, Numer S, Gregory J, Farmer C, Raner GM, Medina HE. Identification of Plant Peroxidases Catalyzing the Degradation of Fluorinated Aromatics Using a Peroxidase Library Approach. Eng Life Sci 2024; 24:e202400054. [PMID: 39502856 PMCID: PMC11532638 DOI: 10.1002/elsc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024] Open
Abstract
In this work, the degradation of mono- and polyfluorinated phenolic compounds was demonstrated by a series of crude plant peroxidases, including horseradish root (HRP) and six members of the Cucurbita genus. Highly active samples were identified using a library screening approach in which more than 50 crude plant samples were initially evaluated for defluorination activity toward 4-fluorophenol. The highest concentrations were observed in the HRP, pumpkin skin (PKS), and butternut squash skin (BNS), which consistently gave the highest intrinsic rates of decomposition for all the substrates tested. Although HRP exhibited a significant decrease in activity with increased fluorination of the phenolic substrate, PKS showed only minor reductions. Furthermore, in silico studies indicated that the active site of HRP poorly accommodates the steric bulk of additional fluorines, causing the substrate to dock farther from the catalytic heme and thus slowing the catalysis rate. We propose that the PKS active site might be larger, allowing closer access to the perfluorinated substrate, and therefore maintaining higher activity compared to the HRP enzyme. However, detailed kinetic characterization studies of the peroxidases are recommended. Conclusively, the high catalytic activity of PKS and its high yield per gram of tissue make it an excellent candidate for developing environmentally friendly biocatalytic methods for degrading fluorinated aromatics. Finally, the success of the library approach in identifying highly active samples for polyfluorinated aromatic compound (PFAC) degradation suggests the method may find utility in the quest for other advanced catalysts for PFAS degradation.
Collapse
Affiliation(s)
- Ashton Ware
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sally Hess
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - David Gligor
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sierra Numer
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Jack Gregory
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Carson Farmer
- School of EngineeringLiberty UniversityLynchburgVirginiaUSA
| | - Gregory M. Raner
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | | |
Collapse
|
36
|
Klose I, Patel C, Mondal A, Schwarz A, Pupo G, Gouverneur V. Fluorspar to fluorochemicals upon low-temperature activation in water. Nature 2024; 635:359-364. [PMID: 39537885 PMCID: PMC11560839 DOI: 10.1038/s41586-024-08125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The dangerous chemical hydrogen fluoride sits at the apex of the fluorochemical industry, but the substantial hazards linked to its production under harsh conditions (above 300 degrees Celsius) and transport are typically contracted to specialists. All fluorochemicals for applications, including refrigeration, electric transportation, agrochemicals and pharmaceuticals, are prepared from fluorspar (CaF2) through a procedure that generates highly dangerous hydrogen fluoride1-5. Here we report a mild method to obtain fluorochemicals directly from fluorspar, bypassing the necessity to manufacture hydrogen fluoride. Acid-grade fluorspar (more than 97 per cent CaF2) is treated with the fluorophilic Lewis acid boric acid (B(OH)3) or silicon dioxide (SiO2), in the presence of oxalic acid, a Brønsted acid that is highly effective for Ca2+ sequestration. This scalable process carried out in water at low temperature (below 50 degrees Celsius) enables access to widely used fluorochemicals, including tetrafluoroboric acid, alkali metal fluorides, tetraalkylammonium fluorides and fluoro(hetero)arenes. The replacement of oxalic acid with sulfuric acid gave comparable results for B(OH)3, but was not as effective when the fluorophilic Lewis acid was SiO2. A similar process also works with the lower-purity metspar. The production of fluorochemicals directly from fluorspar offers the possibility of decentralized manufacturing-an attractive model for the fluorochemical industry. With the renewed interest in innovative methods to synthesize oxalic acid via carbon dioxide capture and biomass6,7, and the challenges posed by our dependence on fossil fuels for sulfur and therefore sulfuric acid supply8,9, our technology may represent a departure towards a sustainable fluorochemical industry.
Collapse
Affiliation(s)
- Immo Klose
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Calum Patel
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Anirban Mondal
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
37
|
Tan X, Li Y, Hao Z, Wang J, Liu X, Liu B, Yuan J, Fang L, Zhou PX, Wang Y. Pentafluorosulfanylation of Acrylamides: The Synthesis of SF 5-Containing Isoquinolinediones with SF 5Cl. J Org Chem 2024; 89:15941-15952. [PMID: 39446016 DOI: 10.1021/acs.joc.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We disclose herein an efficient and facile method for the synthesis of SF5-containing isoquinolinediones with an all-carbon quaternary stereocenter via intramolecular pentafluorosulfanylation of acrylamides using SF5Cl as a pentafluorosulfanylation reagent. The protocol proceeds under mild reaction conditions and enjoys a broad substrate scope, wide functional group compatibility, and high atom- and step-economy. A radical mechanism involving the SF5 radical cascade addition/cyclization of acrylamides is proposed.
Collapse
Affiliation(s)
- Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yuezhen Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ziyou Hao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiangqian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Bingqing Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jianmei Yuan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
38
|
Kabadwal LM, Haldar S, Banerjee D. Sequential One-Pot Transformation to R-CF 2-Embedded 1,5-Diketones Enabled by Nickel: Access to 4-Perfluoroalkylpyridines. Org Lett 2024; 26:9299-9304. [PMID: 39441894 DOI: 10.1021/acs.orglett.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we have demonstrated the application of bench-stable polyfluorinated alcohols as fluoroalkylating reagents for a sequential one-pot transformation with ketones to R-CF2-embedded 1,5-diketones and pyridines enabled by a nickel catalyst. The protocol is tolerant to a range of functional groups (>31 examples and up to 85% yield) and perfluoro alcohols and releases H2 and H2O as byproducts. Preliminary mechanistic studies, EPR analyses, and deuterium scrambling experiments were performed, and observed PC-H/PC-D = 2.12.
Collapse
Affiliation(s)
- Lalit Mohan Kabadwal
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shuvojit Haldar
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debasis Banerjee
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
39
|
Şenel P, Al Faysal A, Yilmaz Z, Erdoğan T, Odabaşoğlu M, Gölcü A. Investigation of the ability of 3-((4-chloro-6-methyl pyrimidin-2-yl)amino) isobenzofuran-1(3H)-one to bind to double-stranded deoxyribonucleic acid. Photochem Photobiol Sci 2024; 23:2107-2121. [PMID: 39522116 DOI: 10.1007/s43630-024-00655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Phthalides represent a notable category of secondary metabolites that are prevalent in various plant species, certain fungi, and liverworts. The significant pharmacological properties of these compounds have led to the synthesis of a novel phthalide derivative. The current study focuses on investigating the binding interactions of a newly synthesized 3-substituted phthalide derivative, specifically 3-((4-chloro-6-methyl pyrimidine-2-yl)amino) isobenzofuran-1(3H)-one (Z11), with double-stranded deoxyribonucleic acid (dsDNA). Research in the pharmaceutical and biological fields aimed at developing more potent DNA-binding agents must take into account the mechanisms by which these newly synthesized compounds interact with DNA. This investigation seeks to explore the binding dynamics between dsDNA and our compound through a variety of analytical techniques, such as electrochemistry, UV spectroscopy, fluorescence spectroscopy, and thermal denaturation. The binding constant (Kb) of Z11 with DNA was determined using both spectroscopic and voltammetric approaches. The research revealed that Z11 employs a groove binding mechanism to associate with dsDNA. To further explore the interactions between Z11 and dsDNA, the study utilized density functional theory (DFT) calculations, molecular docking, and molecular dynamics simulations. These analyses aimed to ascertain the potential for a stable complex formation between Z11 and dsDNA. The results indicate that Z11 is situated within the minor groove of the dsDNA, demonstrating the ability to establish a stable complex. Furthermore, the findings imply that both π-alkyl interactions and hydrogen bonding play significant roles in the stabilization of this complex.
Collapse
Affiliation(s)
- Pelin Şenel
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Zeynep Yilmaz
- Faculty of Engineering, Chemical Engineering Department, Pamukkale University, Denizli, Turkey
| | - Taner Erdoğan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli Vocational High School, Kocaeli, Turkey
| | - Mustafa Odabaşoğlu
- Chemistry Technology Programme, Pamukkale University, Kinikli, Denizli, 20070, Turkey
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey.
| |
Collapse
|
40
|
Joerss H, Freeling F, van Leeuwen S, Hollender J, Liu X, Nödler K, Wang Z, Yu B, Zahn D, Sigmund G. Pesticides can be a substantial source of trifluoroacetate (TFA) to water resources. ENVIRONMENT INTERNATIONAL 2024; 193:109061. [PMID: 39442319 DOI: 10.1016/j.envint.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Through the application of C-CF3-containing plant protection products (PPP) in agriculture, a substantial quantity of trifluoroacetate (TFA) can be formed and emitted. We here present estimations of TFA formation potentials from PPP across three important economical regions, namely Europe, the United States of America and China. PPP with TFA formation potential vary in type and use profile across those regions, but can be found throughout, with the estimated maximum TFA emissions ranging from 0 to 83 kg/km2 per year. Therein, some PPP are only used for specific crops in specific regions, while others are used more widely. The importance of PPP as a TFA source is supported by the field data from a region in Germany, which revealed a significant increase in TFA groundwater concentrations with agriculture compared to other land uses. Substance-specific TFA formation rates and field studies are necessary to characterize the formation of TFA from precursors under environmental conditions and to rank and prioritize PPP of concern for potential (regulatory) action.
Collapse
Affiliation(s)
- Hanna Joerss
- Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Stefan van Leeuwen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wageningen Food Safety Research (WFSR), Wageningen University & Research, PO Box 230 6708 WB Wageningen, The Netherlands
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600, Switzerland; Dübendorf and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Bochi Yu
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Dübendorf and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Daniel Zahn
- Department of Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
41
|
Kang YH, Jeong HJ, Park YJ. Hydramethylnon induces mitochondria-mediated apoptosis in BEAS-2B human bronchial epithelial cells. Toxicol Appl Pharmacol 2024; 492:117102. [PMID: 39270854 DOI: 10.1016/j.taap.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (Z-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.
Collapse
Affiliation(s)
- Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
42
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
43
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
44
|
Li BJ, Ruan YL, Zhu L, Zhou J, Yu JS. Recent advances in catalytic enantioselective construction of monofluoromethyl-substituted stereocenters. Chem Commun (Camb) 2024; 60:12302-12314. [PMID: 39240236 DOI: 10.1039/d4cc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chiral organofluorine compounds featuring a monofluoromethyl (CH2F)-substituted stereocenter are often encountered in a number of drugs and bioactive molecules. Consequently, the development of catalytic asymmetric methods for the enantioselective construction of CH2F-substituted stereocenters has made great progress over the past two decades, and a variety of enantioselective transformations have been accordingly established. According to the types of fluorinated reagents or substrates employed, these protocols can be divided into the following major categories: (i) enantioselective ring opening of epoxides or azetidinium salts by fluoride anions; (ii) asymmetric monofluoromethylation with 1-fluorobis(phenylsulfonyl)methane; (iii) asymmetric fluorocyclization of functionalized alkenes with Selectfluor; and (iv) asymmetric transformations involving α-CH2F ketones, α-CH2F alkenes, or other CH2F-containing substrates. This feature article aims to summarize these recent advances and discusses the possible reaction mechanisms, advantages and limitations of each protocol and their applications. Synthetic opportunities still open for further development are illustrated as well. This review article will be an inspiration for researchers engaged in asymmetric catalysis, organofluorine chemistry, and medicinal chemistry.
Collapse
Affiliation(s)
- Bo-Jie Li
- Hubei Engineering University, Xiaogan, China.
| | - Yu-Long Ruan
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Lei Zhu
- Hubei Engineering University, Xiaogan, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
45
|
Xiong S, Pu J, Xiao T, Jiang Y. Synthesis of 2,3-Diperfluoroalkylated Quinoxalines via Selenium-Catalyzed Reductive C-C Coupling of Vicinal Perfluoroalkyl Formimidoyl Chlorides. Org Lett 2024; 26:8866-8871. [PMID: 39382382 DOI: 10.1021/acs.orglett.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A direct and efficient approach to access structurally interesting 2,3-diperfluoroalkylated quinoxalines via selenium-catalyzed reductive C-C construction of vicinal bis(perfluoroalkyl formimidoyl chloride)s has been disclosed. This protocol features the use of easily accessible starting materials, scalability, and a diverse functional group tolerance. Mechanism studies suggested that this reaction may involve an interesting selenium-containing seven-membered-ring intermediate and proceed through an electrocyclization/selenium reductive elimination pathway, which is significantly different from the traditional transition-metal-catalyzed reductive coupling strategies of alkyl halides.
Collapse
Affiliation(s)
- Shaoqi Xiong
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Jijun Pu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
46
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
47
|
Singh S, Singh RP. Polar-Effect-Directed Control in Site-Selectivity of Radical Substitution Enables C-H Perfluoroalkylation of Coumarins. J Org Chem 2024; 89:14785-14801. [PMID: 39327096 DOI: 10.1021/acs.joc.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel Ru-catalyzed protocol for C-7 selective C-H trifluoromethylation of coumarins in the presence of light is presented. This reaction undergoes a radical type nucleophilic substitution instead of a radical type electrophilic substitution owing to the benzocore activation as a result of lowering the lowest unoccupied molecular orbital (LUMO).
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| |
Collapse
|
48
|
Behera M, Dharpure PD, Sahu AK, Bhat RG. Visible Light-Induced Organophotoredox-Catalyzed β-Hydroxytrifluoromethylation of Unactivated Alkenes. J Org Chem 2024; 89:14695-14709. [PMID: 39380340 DOI: 10.1021/acs.joc.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we report a mild transition metal-free organophotoredox-catalyzed approach for β-hydroxytrifluoromethylation of unactivated alkenes using CF3SO2Na and acridinium salt. The protocol is compatible with various mono-, di-, and trisubstituted aliphatic unactivated alkenes containing numerous functional groups and natural product derivatives. Further, the postsynthetic modifications of the synthesized trifluoromethylated products have been demonstrated through cross-coupling and functional group interconversion reactions. The method proved to be scalable and it works smoothly under the direct exposure of sunlight. A plausible mechanism has been proposed based on the fluorescence quenching experiment and cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ajit K Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
49
|
Patrick S, Bull JA, Miller PW, Crimmin MR. A Continuous Flow Process for the Defluorosilylation of HFC-23 and HFO-1234yf. Org Lett 2024; 26:8605-8609. [PMID: 39352945 PMCID: PMC11474948 DOI: 10.1021/acs.orglett.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
A continuous flow process has been developed for the defluorosilylation of trifluoromethane (HFC-23) and 2,3,3,3-tetrafluoropropene (HFO-1234yf) through reaction with lithium silanide reagents under inert conditions. Design of experiment optimization improved process conditions, including productivity, yields, reduction of solvent use, and gas destruction. The small chain fluorinated organosilane products R3SiCF2H and R3SiCH2C(F)═CF2 were competent nucleophiles in the fluoride-catalyzed difluoromethylation of aldehydes, and trifluoroallylation of aldehydes, ketones, and imines.
Collapse
Affiliation(s)
- Sarah
L. Patrick
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - James A. Bull
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - Philip W. Miller
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| | - Mark R. Crimmin
- Department of Chemistry, Molecular
Sciences Research Hub, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K.
| |
Collapse
|
50
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|