1
|
Modak A, Phutela A, Kundu A, Das S, Bhasin V, Bhattacharyya D, Bhattacharya S. Hyper-Cross-Linked Polymer-Derived Carbon-Coated Fe-Ni Alloy/CNT as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. J Phys Chem Lett 2025; 16:1051-1065. [PMID: 39841958 DOI: 10.1021/acs.jpclett.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites. Experimental observations from X-ray photoelectron spectroscopy and X-ray absorption analysis suggest that C@CNT[Ni] outperforms C@CNT[Cu] in the ORR and OER, which is further supported by density functional theory calculations. C@CNT[Ni] exhibits a higher onset potential (0.99 V vs RHE) and a smaller Tafel slope (40.2 mV decade-1) compared to those of C@CNT/[Cu] in an alkaline electrolyte (0.94 V vs RHE and 46.5 mV decade-1, respectively). Such circumstances are attributed to the alloying effect between Ni and Fe in C@CNT[Ni], in contrast to the existing copper iron oxide phase in C@CNT/[Cu]. It is noteworthy that C@CNT[Ni] also displayed an improved OER, demanding its bifunctional property. As a proof of concept, C@CNT[Ni] was utilized in zinc-air batteries, which shows a high energy efficiency of ∼60%, a small charge-discharge voltage gap of 0.78 V, and excellent cycling performance (∼120 h) at 5 mA cm-2 and 25 °C. This protocol expands the utility of novel metal-organic hyper-cross-linked polymer-derived bimetallic electrocatalysts for clean energy research.
Collapse
Affiliation(s)
- Arindam Modak
- Amity Institute of Applied Science (AIAS), Amity University, Noida, Uttar Pradesh 201313, India
| | - Ankita Phutela
- Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India
| | - Aniruddha Kundu
- Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute (CSIR-CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Srijib Das
- Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute (CSIR-CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vidha Bhasin
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India
| | - Dibyendu Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India
| |
Collapse
|
2
|
Tan HY, Lin SC, Wang J, Chen JH, Chang CJ, Hou CH, Shyue JJ, Kuo TR, Chen HM. Reversibly Adapting Configuration in Atomic Catalysts Enables Efficient Oxygen Electroreduction. J Am Chem Soc 2023. [PMID: 38040669 DOI: 10.1021/jacs.3c10707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Single-atom catalysts (SACs) featuring M-N-C moieties have garnered significant attention as efficient electrocatalysts for the oxygen reduction reaction (ORR). However, the role of the dynamic M-N configuration of SACs induced by the derived frameworks under applied ORR potentials remains poorly understood. Herein, we conduct a comprehensive investigation using multiple operando techniques to assess the dynamic configurations of Cu SACs under various microstructural interface (MSI) regulations by anchoring atomic Cu on g-C3N4 and zeolitic imidazolate framework (ZIF) substrates. Cu SACs supported on g-C3N4 exhibit symmetric Cu-N configurations characterized by a reversibly adaptive nature under operational conditions, which leads to their excellent ORR catalytic activity. In contrast, the Cu-N configuration in ZIF-derived Cu SACs undergoes irreversible structural changes during the ORR process, in which the elongated Cu-N pair is unstable and breaks during the ORR, acting as a competing reaction against the ORR and resulting in high overpotential requirements. Crucially, operando time-resolved X-ray absorption spectroscopy (TR-XAS) and Raman results unequivocally reveal the reversibly adapting properties of the local Cu-N configuration in atomic Cu-anchored g-C3N4, which have been overlooked in numerous literatures. All findings provide valuable insights into the potential-driven characteristics of atomic electrocatalysts during target reactions and offer a systematic approach to study atomic electrocatalysts and their corresponding catalytic behaviors.
Collapse
Affiliation(s)
- Hui-Ying Tan
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chih Lin
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Hsien Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Jui Chang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
3
|
Bhattacharya D, Wang K, Wu GP, Arges C. Extended-Surface Thin-Film Platinum Electrocatalysts with Tunable Nanostructured Morphologies. JACS AU 2023; 3:2269-2279. [PMID: 37654581 PMCID: PMC10466344 DOI: 10.1021/jacsau.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023]
Abstract
Reducing platinum group metal (PGM) loadings in fuel cells and electrolyzers is paramount for cost reductions and getting hydrogen to scale to help decarbonize the global economy. Conventional PGM nanoparticle-based ink-cast electrocatalysts lose performance at high current densities owing to mass transport resistances that arise due to the use of ionomer binders. Herein, we report the development of binder-free extended-surface thin-film platinum electrocatalysts with tunable nanoscale morphology and periodic spacing. The electrocatalysts are prepared by sputtering various loadings of platinum on Al2O3 nanostructures templated from self-assembled block copolymer (BCP) thin films on glassy carbon substrates. Testing for oxygen reduction on a rotating disk electrode setup with ultralow PGM loadings (5.8 μgPt cm-2) demonstrates electrocatalyst performance that rivals commercial platinum electrocatalysts in terms of mass activity (380 mA mgPt-1 at 0.9 V vs RHE) while surpassing commercial catalysts in terms of stability (mass activity loss: 11-13% after 20,000 potential cycles). Moreover, catalyst performance probed as a function of nanoscale feature size and morphology reveals an inverse correlation between feature size and electroactivity, as well as the superiority of cylindrical morphologies over lamellae, presenting BCP templating as a fabrication pathway toward stable, tunable catalyst geometries.
Collapse
Affiliation(s)
- Deepra Bhattacharya
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials
Characterization Laboratory, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Guang-Peng Wu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
and Key Laboratory of Adsorption and Separation Materials and Technologies
of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Christopher Arges
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Cai J, Chen J, Chen Y, Zhang J, Zhang S. Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis. iScience 2023; 26:106730. [PMID: 37216112 PMCID: PMC10193227 DOI: 10.1016/j.isci.2023.106730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Innovation of catalyst structure is extremely important to develop the high-performance electrocatalysts for oxygen-reduction reaction (ORR). Herein, nitrogen-doped carbon semi-tube (N-CST) is used as a functional support for stabilizing the microwave-reduced Pt nanoparticles with an average size of ∼2.8 nm to synthesize the semi-tubular Pt/N-CST catalyst. The contribution of interfacial Pt-N bond between N-CST support and Pt nanoparticles with electrons transfer from N-CST support to Pt nanoparticles is found by electron paramagnetic resonance (EPR) and X-ray absorption fine structure (XAFS) spectroscopy. This bridged Pt-N coordination can simultaneously help ORR electrocatalysis and promote electrochemical stability. As a result, the innovative Pt/N-CST catalyst exhibits excellent catalytic performance, realizing ORR activity and electrochemical stability superior to the commercial Pt/C catalyst. Furthermore, density functional theoretical (DFT) calculations suggest that the interfacial Pt-N-C site with unique affinity of O∗ + OH∗ can provide new active routes for the enhanced electrocatalytic ORR capacity.
Collapse
Affiliation(s)
- Jialin Cai
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yizhe Chen
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shiming Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Zhang B, An G, Chen J, Guo H, Wang L. Surface state engineering of carbon dot/carbon nanotube heterojunctions for boosting oxygen reduction performance. J Colloid Interface Sci 2023; 637:173-181. [PMID: 36701863 DOI: 10.1016/j.jcis.2023.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Platinum-based (Pt) catalysts are the most common commercial catalysts for oxygen reduction reactions (ORR). Unfortunately, their high price, scarcity and poor durability hinder their further development. Therefore, the development of effective and economical ORR electrocatalysts has received increasing attention. Here, carbon dots (CDs) enriched in amino functional groups were successfully loaded onto carbon nanotubes (CNTs) with a large surface area and helical structure through a surface state engineering strategy. The resulting composites (CD/CNTs) are 0D/1D nano heterojunction structures. The CD/CNTs showed superior ORR activity compared with CNTs and CDs (Eoneset = 0.95 V, E1/2 = 0.81 V and limiting current density = 4.74 mA cm-2). In addition, the stability of CD/CNTs in an alkaline medium was up to 30000 s. The excellent ORR performance of CD/CNTs can be attributed to the dominant role of amino-N, the synergistic effect of heterojunctions formed by CDs and CNTs, and the high Lewis basicity. The composite electrocatalyst synthesized by the CD-regulated CNT strategy is expected to be a reliable cathode candidate for future energy conversion devices.
Collapse
Affiliation(s)
- Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Guangbin An
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jia Chen
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Yu H, Wu L, Ni B, Chen T. Research Progress on Porous Carbon-Based Non-Precious Metal Electrocatalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3283. [PMID: 37110119 PMCID: PMC10143149 DOI: 10.3390/ma16083283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The development of efficient, stable, and economic electrocatalysts are key to the large-scale application of electrochemical energy conversion. Porous carbon-based non-precious metal electrocatalysts are considered to be the most promising materials to replace Pt-based catalysts, which are limited in large-scale applications due to high costs. Because of its high specific surface area and easily regulated structure, a porous carbon matrix is conducive to the dispersion of active sites and mass transfer, showing great potential in electrocatalysis. This review will focus on porous carbon-based non-precious metal electrocatalysts and summarize their new progress, focusing on the synthesis and design of porous carbon matrix, metal-free carbon-based catalysts, non-previous metal monatomic carbon-based catalyst, and non-precious metal nanoparticle carbon-based catalysts. In addition, current challenges and future trends will be discussed for better development of porous carbon-based non-precious metal electrocatalysts.
Collapse
|
7
|
Mo X, Deng Y, Lai SKM, Gao X, Yu HL, Low KH, Guo Z, Wu HL, Au-Yeung HY, Tse ECM. Mechanical Interlocking Enhances the Electrocatalytic Oxygen Reduction Activity and Selectivity of Molecular Copper Complexes. J Am Chem Soc 2023; 145:6087-6099. [PMID: 36853653 DOI: 10.1021/jacs.2c10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Xiaoyong Mo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Yulin Deng
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Samuel Kin-Man Lai
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Xutao Gao
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Hung-Ling Yu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Kam-Hung Low
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Zhengxiao Guo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Ho Yu Au-Yeung
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, University of Hong Kong, Hong Kong, China
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| |
Collapse
|
8
|
Choo TF, Mat Zali N, Saidin NU, Kok KY. Gamma Radiolysis-Synthesized Carbon Nanotube–Supported Palladium as Electrocatalyst for Oxygen Reduction Reaction. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Marra E, Grimler H, Montserrat-Sisó G, Wreland Lindström R, Wickman B, Lindbergh G, Lagergren C. Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Toward an objective performance evaluation of commercial Pt/C electrocatalysts for oxygen reduction: Effect of catalyst loading. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Lin F, Lv F, Zhang Q, Luo H, Wang K, Zhou J, Zhang W, Zhang W, Wang D, Gu L, Guo S. Local Coordination Regulation through Tuning Atomic-Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202084. [PMID: 35484940 DOI: 10.1002/adma.202202084] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Moderate adsorption of oxygenated intermediates takes a significant role in rational design of high-efficiency oxygen reduction reaction (ORR) electrocatalysts. Long-serving as a reliable strategy to tune geometric structure of nanomaterials, defect engineering enjoys the great ability of adjusting the coordination environment of catalytic active sites, which enables dominant regulation of adsorption energy and kinetics of ORR catalysis. However, limited to controllable nanocrystals fabrication, inducing uniformly dispersed high-coordinated defects into ultrathin 2D nanosheets remains challenging. Herein, atomic-scale cavities (ASCs) are proposed as a new kind of high-coordinated active site and successfully introduced into suprathin Pd (111)-exposed metallene. Due to its atomic concave architecture, leading to elevated CN and moderately downshifted d-band center, the as-made Pd metallene with ASCs (c-Pd M) exhibits excellent ORR performance with mass activity of 2.76 A mgPd -1 at 0.9 V versus reversible hydrogen electrode (RHE) and half-wave potential as high as 0.947 V, which is 18.9 (2.7) times higher and 104 (46) mV larger than that of commercial Pt/C (Pd metallene without ASCs). Besides, the durability of c-Pd M exceeds its commercial counterpart with ≈30% loss after 5000 cycles. This work highlights a new-style mentality of designing fancy active sites toward efficient ORR electrocatalysis.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
12
|
Rossetti G, Xu J, Hong S, Casalegno A, Prinz FB, Di Fonzo F. Hierarchical titanium nitride nanostructured thin film gas diffusion electrodes for next generation PEM fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Ayyubov I, Tálas E, Salmanzade K, Kuncser A, Pászti Z, Neațu Ș, Mirea AG, Florea M, Tompos A, Borbáth I. Electrocatalytic Properties of Mixed-Oxide-Containing Composite-Supported Platinum for Polymer Electrolyte Membrane (PEM) Fuel Cells. MATERIALS 2022; 15:ma15103671. [PMID: 35629708 PMCID: PMC9148157 DOI: 10.3390/ma15103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Abstract
TiO2-based mixed oxide–carbon composite supports have been suggested to provide enhanced stability for platinum (Pt) electrocatalysts in polymer electrolyte membrane (PEM) fuel cells. The addition of molybdenum (Mo) to the mixed oxide is known to increase the CO tolerance of the electrocatalyst. In this work Pt catalysts, supported on Ti1−xMoxO2–C composites with a 25/75 oxide/carbon mass ratio and prepared from different carbon materials (C: Vulcan XC-72, unmodified and functionalized Black Pearls 2000), were compared in the hydrogen oxidation reaction (HOR) and in the oxygen reduction reaction (ORR) with a commercial Pt/C reference catalyst in order to assess the influence of the support on the electrocatalytic behavior. Our aim was to perform electrochemical studies in preparation for fuel cell tests. The ORR kinetic parameters from the Koutecky–Levich plot suggested a four-electron transfer per oxygen molecule, resulting in H2O. The similarity between the Tafel slopes suggested the same reaction mechanism for electrocatalysts supported by these composites. The HOR activity of the composite-supported electrocatalysts was independent of the type of carbonaceous material. A noticeable difference in the stability of the catalysts appeared only after 5000 polarization cycles; the Black Pearl-containing sample showed the highest stability.
Collapse
Affiliation(s)
- Ilgar Ayyubov
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Emília Tálas
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| | - Khirdakhanim Salmanzade
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Andrei Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Zoltán Pászti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| | - Ștefan Neațu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Anca G. Mirea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - Mihaela Florea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania; (A.K.); (Ș.N.); (A.G.M.); (M.F.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
- Correspondence: ; Tel.: +36-1-382-501
| | - Irina Borbáth
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (E.T.); (K.S.); (Z.P.); (I.B.)
| |
Collapse
|
14
|
Mashindi V, Mente P, Phaahlamohlaka TN, Mpofu N, Makgae OA, Moreno BD, Barrett DH, Forbes RP, Levecque PB, Ozoemena KI, Coville NJ. Platinum Nanocatalysts Supported on Defective Hollow Carbon Spheres: Oxygen Reduction Reaction Durability Studies. Front Chem 2022; 10:839867. [PMID: 35265587 PMCID: PMC8899172 DOI: 10.3389/fchem.2022.839867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The durability and long-term applicability of catalysts are critical parameters for the commercialization and adoption of fuel cells. Even though a few studies have been conducted on hollow carbon spheres (HCSs) as supports for Pt in oxygen reduction reactions (ORR) catalysis, in-depth durability studies have not been conducted thus far. In this study, Pt/HCSs and Pt/nitrogen-doped HCSs (Pt/NHCSs) were prepared using a reflux deposition technique. Small Pt particles were formed with deposition on the outside of the shell and inside the pores of the shell. The new catalysts demonstrated high activity (>380 μA cm−2 and 240 mA g−1) surpassing the commercial Pt/C by more than 10%. The catalysts demonstrated excellent durability compared to a commercial Pt/C in load cycling, experiencing less than 50% changes in the mass-specific activity (MA) and surface area-specific activity (SA). In stop-start durability cycling, the new materials demonstrated high stability with more than 50% retention of electrochemical active surface areas (ECSAs). The results can be rationalised by the high BET surface areas coupled with an array of meso and micropores that led to Pt confinement. Further, pair distribution function (PDF) analysis of the catalysts confirmed that the nitrogen and oxygen functional groups, as well as the shell curvature/roughness provided defects and nucleation sites for the deposition of the small Pt nanoparticles. The balance between graphitic and diamond-like carbon was critical for the electronic conductivity and to provide strong Pt-support anchoring.
Collapse
Affiliation(s)
- Victor Mashindi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Pumza Mente
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Tumelo N. Phaahlamohlaka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Nobuhle Mpofu
- HySA Catalysis Centre of Competence, Department of Chemical Engineering, Catalysis Institute, University of Cape Town, Cape Town, South Africa
| | - Ofentse A. Makgae
- National Centre for High-resolution Electron-microscopy (nCHREM), Centre for Analysis and Synthesis NanoLund, Lund University, Lund, Sweden
| | | | - Dean H. Barrett
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Roy P. Forbes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Pieter B. Levecque
- HySA Catalysis Centre of Competence, Department of Chemical Engineering, Catalysis Institute, University of Cape Town, Cape Town, South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil J. Coville
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Neil J. Coville,
| |
Collapse
|
15
|
Kamat GA, Zamora Zeledón JA, Gunasooriya GTKK, Dull SM, Perryman JT, Nørskov JK, Stevens MB, Jaramillo TF. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun Chem 2022; 5:20. [PMID: 36697647 PMCID: PMC9814610 DOI: 10.1038/s42004-022-00635-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.
Collapse
Affiliation(s)
- Gaurav Ashish Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Samuel M Dull
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Joseph T Perryman
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
16
|
Posudievsky OY, Kondratyuk AS, Kozarenko OA, Cherepanov VV, Karbivskiy VL, Koshechko VG, Pokhodenko VD. Boosting graphene electrocatalytic efficiency in oxygen reduction reaction by mechanochemically induced low-temperature nitrogen doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Xia YF, Guo P, Li JZ, Zhao L, Sui XL, Wang Y, Wang ZB. How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts with rotating disk electrode. iScience 2021; 24:103024. [PMID: 34585108 PMCID: PMC8450266 DOI: 10.1016/j.isci.2021.103024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The sluggish oxygen reduction reaction (ORR) has becoming the bottleneck of largescale implementation of proton exchange membrane fuel cells. However, when it comes to the ORR activity assessing of platinum group metals (PGMs) with rotating disk electrode, the corresponding potential conversion vs. reversible hydrogen electrode, test protocols, and activity calculation processes are still in chaos in many published literatures. In this work, two standard calculation processes for PGM ORR activities are demonstrated, followed by a specification for the usage of reference electrodes. Then a 4-fold discrepancy in ORR activities obtained via different test protocols is found for the same Pt/C, and an average adsorption model and the "coverage effects" are proposed to illustrate the hysteresis loop between negative and positive-going ORR polarization plots. Finally, four motions over appropriate assessment of PGM ORR activity are emphasized, hoping to bring a fair communication platform for researchers from different groups.
Collapse
Affiliation(s)
- Yun-Fei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jia-Zhan Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xu-Lei Sui
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Morales DM, Villalobos J, Kazakova MA, Xiao J, Risch M. Nafion-Induced Reduction of Manganese and its Impact on the Electrocatalytic Properties of a Highly Active MnFeNi Oxide for Bifunctional Oxygen Conversion. ChemElectroChem 2021; 8:2979-2983. [PMID: 34595088 PMCID: PMC8457226 DOI: 10.1002/celc.202100744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Electrocatalysts for bifunctional oxygen reduction (ORR) and oxygen evolution reactions (OER) are commonly studied under hydrodynamic conditions, rendering the use of binders necessary to ensure the mechanical stability of the electrode films. The presence of a binder, however, may influence the properties of the materials under examination to an unknown extent. Herein, we investigate the impact of Nafion on a highly active ORR/OER catalyst consisting of MnFeNi oxide nanoparticles supported on multi-walled carbon nanotubes. Electrochemical studies revealed that, in addition to enhancing the mechanical stability and particle connectivity, Nafion poses a major impact on the ORR selectivity, which correlates with a decrease in the valence state of Mn according to X-ray absorption spectroscopy. These findings call for awareness regarding the use of electrode additives, since in some cases the extent of their impact on the properties of electrode films cannot be regarded as negligible.
Collapse
Affiliation(s)
- Dulce M. Morales
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner-Platz 114109BerlinGermany
| | - Javier Villalobos
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner-Platz 114109BerlinGermany
| | - Mariya A. Kazakova
- Boreskov Institute of CatalysisSB RASLavrentieva 5630090NovosibirskRussia
| | - Jie Xiao
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner-Platz 114109BerlinGermany
| |
Collapse
|