1
|
Zarerasouli P, Aghaei F, Bahador H. An innovative method of the vertical coupling effect improvement to the tandem Cu(In, Ga)Se 2/perovskite solar cells using Ag cluster nanostructures. Sci Rep 2024; 14:13866. [PMID: 38879706 PMCID: PMC11180089 DOI: 10.1038/s41598-024-64822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/13/2024] [Indexed: 06/19/2024] Open
Abstract
The efficiency of double-junction CIGS/Perovskite-based solar cells has significantly improved through recent research. This study presents a new plasmonic structure for these optical devices, utilizing cluster nanostructures to increase photon absorption between 650 and 1137 nm wavelength ranges. The proposed nanostructure includes two vertically coupled silver nanoparticles embedded at the center of the bottom active layer (CIGS) that absorb most of the incoming light to CIGS within the active layer. The electric field produced by the coupling of the nanoparticles has a superior performance. To analyze the effect of nanoparticle coupling on CIGS/Perovskite solar cell performance, evaluated the short-circuit current density and power conversion efficiency for single and cluster nanostructures with a single nanoparticle in the middle of CIGS. The structures with a single nanoparticle displayed Jsc = 16.89 mA cm-2 and PCE = 31.76%, while the cluster nanostructure represents Jsc = 19 mA cm-2 and PCE = 35.81%. Not only did the use of the cluster nanostructure significantly improve absorption and performance compared to the bare case, but it also exhibited a suitable improvement compared to the single nanoparticle.
Collapse
Affiliation(s)
- Parisa Zarerasouli
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Aghaei
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Hamid Bahador
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
2
|
Ito K, Nonomura K, Kan R, Tada K, Lin CC, Kinoshita T, Bessho T, Uchida S, Segawa H. Spectral Splitting Solar Cells Consisting of a Mesoscopic Wide-Bandgap Perovskite Solar Cell and an Inverted Narrow-Bandgap Perovskite Solar Cell. ACS OMEGA 2024; 9:3028-3034. [PMID: 38250351 PMCID: PMC10795132 DOI: 10.1021/acsomega.3c09654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
In comparison to monolithic perovskite/perovskite double-junction solar cells, a four-terminal spectrum-splitting system is a simple method to obtain a higher power conversion efficiency (PCE) because it has no constraints of unifying the structures of the top and bottom cells. In this work, utilizing the fact that low-bandgap Sn-Pb bottom cells work the best in p-i-n while Pb-based wide-bandgap top cells work better in an n-i-p architecture, a wide-bandgap (Eg = 1.61 eV) perovskite solar cell with a mesoscopic structure and a narrow-bandgap (Eg = 1.27 eV) perovskite solar cell with an inverted structure were combined to fabricate a double-junction four-terminal spectral splitting solar cell. The double-junction solar cell with the 801 nm spectral splitting with an active area of 0.18 cm2 was found to work with a PCE of 25.3%, which is the highest reported so far for a 4-T all-perovskite double-junction spectral splitting solar cell.
Collapse
Affiliation(s)
- Kei Ito
- Department
of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuteru Nonomura
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ryota Kan
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Keishi Tada
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ching Chang Lin
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takumi Kinoshita
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takeru Bessho
- Research
Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Satoshi Uchida
- Research
Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroshi Segawa
- Department
of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research
Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Ašmontas S, Mujahid M. Recent Progress in Perovskite Tandem Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1886. [PMID: 37368318 DOI: 10.3390/nano13121886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Tandem solar cells are widely considered the industry's next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has been an increase in the perovskite/Si tandem devices' power conversion efficiency, but it is still not as high as it might be. Their instability and difficulties in large-area realization are significant challenges in commercialization. In the first part of this overview, we set the stage by discussing the background of tandem solar cells and their development over time. Subsequently, a concise summary of recent advancements in perovskite tandem solar cells utilizing various device topologies is presented. In addition, we explore the many possible configurations of tandem module technology: the present work addresses the characteristics and efficacy of 2T monolithic and mechanically stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells' power conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy for solving intrinsic instability problems.
Collapse
Affiliation(s)
- Steponas Ašmontas
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Muhammad Mujahid
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Amrillah T, Prasetio A, Supandi AR, Sidiq DH, Putra FS, Nugroho MA, Salsabilla Z, Azmi R. Environment-friendly copper-based chalcogenide thin film solar cells: status and perspectives. MATERIALS HORIZONS 2023; 10:313-339. [PMID: 36537134 DOI: 10.1039/d2mh00983h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Copper chalcogenides (CuCh) have attracted considerable attention due to their promising potential as environmental-friendly photoactive material for lightweight and flexible thin film solar cells. Further, CuCh can be fabricated from simple to complex chemical compositions and offer a remarkable charge carrier mobility and excellent absorption coefficient with a desirable bandgap (up to ∼1.0 eV). Currently, they have demonstrated maximum power conversion efficiencies of over 23% for single-junction, around 25% and 28% for monolithic 2-Terminal (2T) and mechanically-stacked 4-Terminal (4T) perovskite/CuCh tandem solar cells, respectively. This article presents an overview of CuCh-based materials, from binary- to quaternary-CuCh compounds for single- and multi-junction solar cells. Then, we discuss the development of fabrication methods and the approaches taken to improve the performance of CuCh-based thin film itself, including chemical doping, the development of complement layers, and their potential application in flexible and lightweight devices. Finally, these technologies' stability, scalability, and toxicity aspects are discussed to enhance their current marketability.
Collapse
Affiliation(s)
- Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidisciplinary, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Adi Prasetio
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Abdul Rohman Supandi
- Department of Chemistry and Materials, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - David Hadid Sidiq
- Department of Nanotechnology, Faculty of Advanced Technology and Multidisciplinary, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Fajar Sukamto Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidisciplinary, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Muhammad Adi Nugroho
- Department of Nanotechnology, Faculty of Advanced Technology and Multidisciplinary, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Zahra Salsabilla
- Department of Nanotechnology, Faculty of Advanced Technology and Multidisciplinary, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Randi Azmi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|