1
|
Chen B, Chen J, Shen Z, Wang W, Li J, Liu S, Cai H, Lu S. The Inhibition of γ-Aminobutyric Acid B1 Receptor Regulates Angiogenesis via the Hippo/YAP Signaling Pathway. Ann Vasc Surg 2024; 109:370-381. [PMID: 39025214 DOI: 10.1016/j.avsg.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 07/20/2024]
Abstract
Promoting the establishment of collateral circulation is essential for chronic lower extremity ischemia. However, no effective therapeutic drugs have yet been developed. Recent studies discovered that in the peripheral arteries, there are γ-aminobutyric acid B1 (GABAB1) receptors expressed in endothelial cells and smooth muscle cells, these receptors may have some effects in regulating vascular functions, but the precise mechanism is not yet clear. This study explores the effect of GABAB1 receptor inhibition on angiogenesis and its regulatory mechanism. The expression of GABAB1 in human umbilical vein endothelial cells (HUVECs) was knocked down using shRNA transfection, and effects on HUVECs' proliferation, migration, and tube formation ability were detected. Western blot and RT-PCR were used to verify the signal pathway. The murine hind limb ischemia model was used to verify the effect of CGP35348, an antagonist of GABAB1R, on the recovery of blood flow perfusion and angiogenesis in ischemic tissues. Cell proliferation, migration, and tube formation ability were improved after GABAB1 receptor knockdown in HUVECs. The phosphorylation of the HIPPO/Yes-associated protein (YAP) pathway decreased, while the effect of promoting angiogenesis increased. After treating the ischemic hindlimbs of mice with GABAB1 receptor antagonists, the blood flow perfusion recovered and the angiogenesis increased. These findings demonstrate the effect of GABAB1 receptor inhibition on the HIPPO/YAP pathway in regulating angiogenesis, suggesting that inhibiting GABAB1 receptor levels might be a novel approach for chronic lower extremity ischemia diseases.
Collapse
MESH Headings
- Animals
- Humans
- Signal Transduction
- Hindlimb
- Cell Proliferation/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Neovascularization, Physiologic/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Hippo Signaling Pathway
- Cell Movement
- Ischemia/physiopathology
- Ischemia/metabolism
- Ischemia/genetics
- Disease Models, Animal
- YAP-Signaling Proteins/metabolism
- Receptors, GABA-B/metabolism
- Receptors, GABA-B/genetics
- Mice, Inbred C57BL
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cells, Cultured
- Phosphorylation
- GABA-B Receptor Antagonists/pharmacology
- Male
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Regional Blood Flow
- Collateral Circulation
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Angiogenesis
Collapse
Affiliation(s)
- Bingyi Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinxing Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zekun Shen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiyi Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Mastoor Y, Karimi M, Sun M, Ahadi F, Mathieu P, Fan M, Han L, Han LH, Clyne AM. Vascular smooth muscle cells can be circumferentially aligned inside a channel using tunable gelatin microribbons. Biofabrication 2024; 17:015011. [PMID: 39423834 DOI: 10.1088/1758-5090/ad88a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
The gold standard to measure arterial health is vasodilation in response to nitric oxide. Vasodilation is generally measured via pressure myography of arteries isolated from animal models. However, animal arteries can be difficult to obtain and may have limited relevance to human physiology. It is, therefore, critical to engineer human cell-based arterial models capable of contraction. Vascular smooth muscle cells (SMCs) must be circumferentially aligned around the vessel lumen to contract the vessel, which is challenging to achieve in a soft blood vessel model. In this study, we used gelatin microribbons to circumferentially align SMCs inside a hydrogel channel. To accomplish this, we created tunable gelatin microribbons of varying stiffnesses and thicknesses and assessed how SMCs aligned along them. We then wrapped soft, thick microribbons around a needle and encapsulated them in a gelatin methacryloyl hydrogel, forming a microribbon-lined channel. Finally, we seeded SMCs inside the channel and showed that they adhered best to fibronectin and circumferentially aligned in response to the microribbons. Together, these data show that tunable gelatin microribbons can be used to circumferentially align SMCs inside a channel. This technique can be used to create a human artery-on-a-chip to assess vasodilation via pressure myography, as well as to align other cell types for 3Din vitromodels.
Collapse
Affiliation(s)
- Yusuf Mastoor
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Mahsa Karimi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Michael Sun
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Fereshteh Ahadi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Pattie Mathieu
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Mingyue Fan
- School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| |
Collapse
|
3
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
4
|
Gao S, Thillaikumaran T, Dominguez MH, Giang W, Hayes K, Chen X, Pace J, Bockman J, Jathan D, Sung D, Narayan S, Frankfurter M, Mericko-Ishizuka P, Yang J, Castro M, Potente M, Kahn ML. YAP/TAZ signaling in allantois-derived cells is required for placental vascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613151. [PMID: 39345443 PMCID: PMC11429833 DOI: 10.1101/2024.09.15.613151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Normal placental development and angiogenesis are crucial for fetal growth and maternal health during pregnancy. However, molecular regulation of placental angiogenesis has been difficult to study due to a lack of specific genetic tools that isolate the placenta from the embryo and yolk sac. To address this gap in knowledge we recently developed Hoxa13 Cre mice in which Cre is expressed in allantois-derived cells, including placental endothelial and stromal cells. Mice lacking the transcriptional regulators Yes-associated protein (YAP) and PDZ-binding motif (TAZ) in allantois-derived cells exhibit embryonic lethality at midgestation with compromised placental vasculature. snRNA-seq analysis revealed transcriptional changes in placental stromal cells and endothelial cells. YAP/TAZ mutants exhibited significantly reduced placental stromal cells prior to the endothelial architectural change, highlighting the role of these cells in placental vascular growth. These results reveal a central role for YAP/TAZ signaling during placental vascular growth and implicate Hoxa13 -derived placental stromal cells as a critical component of placental vascularization.
Collapse
|
5
|
Irtyuga O, Skitchenko R, Babakekhyan M, Usoltsev D, Tarnovskaya S, Malashicheva A, Fomicheva Y, Rotar O, Moiseeva O, Shadrina U, Artomov M, Kostareva A, Shlyakhto E. The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis. J Cardiovasc Dev Dis 2024; 11:226. [PMID: 39057646 PMCID: PMC11277067 DOI: 10.3390/jcdd11070226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The NOTCH-signaling pathway is responsible for intercellular interactions and cell fate commitment. Recently, NOTCH pathway genes were demonstrated to play an important role in aortic valve development, leading to an increased calcified aortic valve disease (CAVD) later in life. Here, we further investigate the association between genetic variants in the NOTCH pathway genes and aortic stenosis in a case-control study of 90 CAVD cases and 4723 controls using target panel sequencing of full-length 20 genes from a NOTCH-related pathway (DVL2, DTX2, MFNG, NUMBL, LFNG, DVL1, DTX4, APH1A, DTX1, APH1B, NOTCH1, ADAM17, DVL3, NCSTN, DTX3L, ILK, RFNG, DTX3, NOTCH4, PSENEN). We identified a common intronic variant in NOTCH1, protecting against CAVD development (rs3812603), as well as several rare and unique new variants in NOTCH-pathway genes (DTX4, NOTCH1, DTX1, DVL2, NOTCH1, DTX3L, DVL3), with a prominent effect of the protein structure and function.
Collapse
Affiliation(s)
- Olga Irtyuga
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Rostislav Skitchenko
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Mary Babakekhyan
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Dmitrii Usoltsev
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Svetlana Tarnovskaya
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Anna Malashicheva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Yulya Fomicheva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Oksana Rotar
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Olga Moiseeva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Ulyana Shadrina
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| | - Mykyta Artomov
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
- Department of Women’s and Children’s Health and Centre for Molecular Medicine, Karolinska Institute, 17176 Stockholm, Sweden
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (R.S.); (M.B.); (D.U.); (S.T.); (A.M.); (Y.F.); (O.R.); (O.M.); (U.S.); (M.A.); (A.K.); (E.S.)
| |
Collapse
|
6
|
Ritsvall O, Albinsson S. Emerging role of YAP/TAZ in vascular mechanotransduction and disease. Microcirculation 2024; 31:e12838. [PMID: 38011540 DOI: 10.1111/micc.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.
Collapse
Affiliation(s)
- Olivia Ritsvall
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Molecular Vascular Physiology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Lin W, Hou L, Tang J, Huang A, Jia Z. Mir-195-5p targets Smad7 regulation of the Wnt/β-catenin pathway to promote osteogenic differentiation of vascular smooth muscle cells. BMC Cardiovasc Disord 2024; 24:221. [PMID: 38654161 PMCID: PMC11036659 DOI: 10.1186/s12872-024-03891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium β-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/β-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/β-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by β-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/β-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Intervention, Wen Zhou People's Hospital, Wenzhou, 325041, China
| | - Lianglei Hou
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Jialyu Tang
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Anwu Huang
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Zhuyin Jia
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China.
- Panvascular Disease Management Center (PVDMC), Wen Zhou Central Hospital, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Chaudhry FN, Michki NS, Shirmer DL, McGrath-Morrow S, Young LR, Frank DB, Zepp JA. Dynamic Hippo pathway activity underlies mesenchymal differentiation during lung alveolar morphogenesis. Development 2024; 151:dev202430. [PMID: 38602485 PMCID: PMC11112347 DOI: 10.1242/dev.202430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.
Collapse
Affiliation(s)
- Fatima N. Chaudhry
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nigel S. Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dain L. Shirmer
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa R. Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Jia L, Tian H, Sun S, Hao X, Wen Y. EID3 inhibits the osteogenic differentiation of periodontal ligament stem cells and mediates the signal transduction of TAZ-EID3-AKT/MTOR/ERK. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119662. [PMID: 38216090 DOI: 10.1016/j.bbamcr.2024.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Exploring the molecular mechanisms of cell behaviors is beneficial for promoting periodontal ligament stem cell (PDLSC)-mediated tissue regeneration. This study intends to explore the regulatory effects of EID3 on cell proliferation, apoptosis, and osteogenic differentiation and to preliminarily explore the regulatory mechanism of EID3. Here, EID3 was overexpressed or knocked down in PDLSCs by recombinant lentivirus. Then, cell proliferation activity was analyzed by colony-forming assay, EdU assay, and cell cycle assay. Cell apoptosis was detected by flow cytometry. The osteo-differentiation potential was analyzed using ALP activity assay, ALP staining, alizarin red staining, and mRNA and protein assay of osteo-differentiation related genes. The results showed that when EID3 was knocked down, the proliferation activity and osteogenic differentiation potential of PDLSCs decreased, while they increased when EID3 was overexpressed. The cell apoptosis rate decreased in PDLSCs with EID3 knockdown but increased in PDLSCs with EID3 overexpression. Moreover, EID3 inhibited the transduction of the AKT/MTOR and ERK signaling pathway. In addition, TAZ negatively regulated the expression of EID3, and the overexpression of EID3 partially reversed the promotive effects of TAZ on the osteogenic differentiation of PDLSCs. Taken together, EID3 inhibits the proliferation and osteogenic differentiation while promoting the apoptosis of PDLSCs. EID3 inhibits the transduction of the AKT/MTOR and ERK signaling pathways and mediates the regulatory effect of TAZ on PDLSC osteogenic differentiation.
Collapse
Affiliation(s)
- Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Hui Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Stomatology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China.
| |
Collapse
|
10
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
11
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
13
|
Liu L, Arévalo-Martínez M, Rippe C, Johansson ME, Holmberg J, Albinsson S, Swärd K. Itga8-Cre-mediated deletion of YAP and TAZ impairs bladder contractility with minimal inflammation and chondrogenic differentiation. Am J Physiol Cell Physiol 2023; 325:C1485-C1501. [PMID: 37927241 DOI: 10.1152/ajpcell.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
A role of Yes1-associated transcriptional regulator (YAP) and WW domain-containing transcription regulator 1 (TAZ) in vascular and gastrointestinal contractility due to control of myocardin (Myocd) expression, which in turn activates contractile genes, has been demonstrated. Whether this transcriptional hierarchy applies to the urinary bladder is unclear. We found that YAP/TAZ are expressed in human detrusor myocytes and therefore exploited the Itga8-CreERT2 model for the deletion of YAP/TAZ. Recombination occurred in detrusor, and YAP/TAZ transcripts were reduced by >75%. Bladder weights were increased (by ≈22%), but histology demonstrated minimal changes in the detrusor, while arteries in the mucosa were inflamed. Real-time quantitative reverse transcription PCR (RT-qPCR) using the detrusor demonstrated reductions of Myocd (-79 ± 18%) and serum response factor (Srf) along with contractile genes. In addition, the cholinergic receptor muscarinic 2 (Chrm2) and Chrm3 were suppressed (-80 ± 23% and -80 ± 10%), whereas minute increases of Il1b and Il6 were seen. Unlike YAP/TAZ-deficient arteries, SRY (sex-determining region Y)-box 9 (Sox9) did not increase, and no chondrogenic differentiation was apparent. Reductions of smooth muscle myosin heavy chain 11 (Myh11), myosin light-chain kinase gene (Mylk), and Chrm3 were seen at the protein level. Beyond restraining the smooth muscle cell (SMC) program of gene expression, YAP/TAZ depletion silenced SMC-specific splicing, including exon 2a of Myocd. Reduced contractile differentiation was associated with weaker contraction in response to myosin phosphatase inhibition (-36%) and muscarinic activation (reduced by 53% at 0.3 µM carbachol). Finally, short-term overexpression of constitutively active YAP in human embryonic kidney 293 (HEK293) cells increased myocardin (greater than eightfold) along with archetypal target genes, but contractile genes were unaffected or reduced. YAP and TAZ thus regulate myocardin expression in the detrusor, and this is important for SMC differentiation and splicing as well as for contractility.NEW & NOTEWORTHY This study addresses the hypothesis that YAP and TAZ have an overarching role in the transcriptional hierarchy in the smooth muscle of the urinary bladder by controlling myocardin expression. Using smooth muscle-specific and inducible deletion of YAP and TAZ in adult mice, we find that YAP and TAZ control myocardin expression, contractile differentiation, smooth muscle-specific splicing, and bladder contractility. These effects are largely independent of inflammation and chondrogenic differentiation.
Collapse
Affiliation(s)
- Li Liu
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | | | - Catarina Rippe
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Holmberg
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karl Swärd
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Arévalo Martínez M, Ritsvall O, Bastrup JA, Celik S, Jakobsson G, Daoud F, Winqvist C, Aspberg A, Rippe C, Maegdefessel L, Schiopu A, Jepps TA, Holmberg J, Swärd K, Albinsson S. Vascular smooth muscle-specific YAP/TAZ deletion triggers aneurysm development in mouse aorta. JCI Insight 2023; 8:e170845. [PMID: 37561588 PMCID: PMC10544211 DOI: 10.1172/jci.insight.170845] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inadequate adaption to mechanical forces, including blood pressure, contributes to development of arterial aneurysms. Recent studies have pointed to a mechanoprotective role of YAP and TAZ in vascular smooth muscle cells (SMCs). Here, we identified reduced expression of YAP1 in human aortic aneurysms. Vascular SMC-specific knockouts (KOs) of YAP/TAZ were thus generated using the integrin α8-Cre (Itga8-Cre) mouse model (i8-YT-KO). i8-YT-KO mice spontaneously developed aneurysms in the abdominal aorta within 2 weeks of KO induction and in smaller arteries at later times. The vascular specificity of Itga8-Cre circumvented gastrointestinal effects. Aortic aneurysms were characterized by elastin disarray, SMC apoptosis, and accumulation of proteoglycans and immune cell populations. RNA sequencing, proteomics, and myography demonstrated decreased contractile differentiation of SMCs and impaired vascular contractility. This associated with partial loss of myocardin expression, reduced blood pressure, and edema. Mediators in the inflammatory cGAS/STING pathway were increased. A sizeable increase in SOX9, along with several direct target genes, including aggrecan (Acan), contributed to proteoglycan accumulation. This was the earliest detectable change, occurring 3 days after KO induction and before the proinflammatory transition. In conclusion, Itga8-Cre deletion of YAP and TAZ represents a rapid and spontaneous aneurysm model that recapitulates features of human abdominal aortic aneurysms.
Collapse
Affiliation(s)
| | - Olivia Ritsvall
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joakim Armstrong Bastrup
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Selvi Celik
- Molecular Cardiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Fatima Daoud
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christopher Winqvist
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catarina Rippe
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden, and
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar - Technical University Munich (TUM), Munich, Germany
| | - Alexandru Schiopu
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital Lund, Lund, Sweden, and
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Thomas A. Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Holmberg
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karl Swärd
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Li R, Huang W. Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24021666. [PMID: 36675179 PMCID: PMC9861006 DOI: 10.3390/ijms24021666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Yes-associated protein (YAP, also known as YAP1) and its paralogue TAZ (with a PDZ-binding motif) are transcriptional coactivators that switch between the cytoplasm and nucleus and regulate the organ size and tissue homeostasis. This review focuses on the research progress on YAP/TAZ signaling proteins in myocardial infarction, cardiac remodeling, hypertension and coronary heart disease, cardiomyopathy, and aortic disease. Based on preclinical studies on YAP/TAZ signaling proteins in cellular/animal models and clinical patients, the potential roles of YAP/TAZ proteins in some cardiovascular diseases (CVDs) are summarized.
Collapse
|
16
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Daoud F, Arévalo Martínez M, Holst J, Holmberg J, Albinsson S, Swärd K. Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochem Pharmacol 2022; 206:115307. [DOI: 10.1016/j.bcp.2022.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
18
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
19
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
21
|
Daoud F, Arévalo Martinez M, Holmberg J, Alajbegovic A, Ali N, Rippe C, Swärd K, Albinsson S. YAP and TAZ in Vascular Smooth Muscle Confer Protection Against Hypertensive Vasculopathy. Arterioscler Thromb Vasc Biol 2022; 42:428-443. [PMID: 35196875 PMCID: PMC8939708 DOI: 10.1161/atvbaha.121.317365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. We hypothesize that appropriate mechanotransduction and contractile function in vascular smooth muscle cells are crucial to maintain vascular wall integrity. The Hippo pathway effectors YAP (yes-associated protein 1) and TAZ (WW domain containing transcription regulator 1) have been identified as mechanosensitive transcriptional coactivators. However, their role in vascular smooth muscle cell mechanotransduction has not been investigated in vivo. METHODS We performed physiological and molecular analyses utilizing an inducible smooth muscle-specific YAP/TAZ knockout mouse model. RESULTS Arteries lacking YAP/TAZ have reduced agonist-mediated contraction, decreased myogenic response, and attenuated stretch-induced transcriptional regulation of smooth muscle markers. Moreover, in established hypertension, YAP/TAZ knockout results in severe vascular lesions in small mesenteric arteries characterized by neointimal hyperplasia, elastin degradation, and adventitial thickening. CONCLUSIONS This study demonstrates a protective role of YAP/TAZ against hypertensive vasculopathy.
Collapse
Affiliation(s)
- Fatima Daoud
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Marycarmen Arévalo Martinez
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Neserin Ali
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit (N.A.), Lund University, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science (F.D., M.A.M., J.H., A.A., C.R., K.S., S.A.), Lund University, Sweden
| |
Collapse
|
22
|
Sun C, He B, Sun M, Lv X, Wang F, Chen J, Zhang J, Ye Z, Wen J, Liu P. Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration. Front Cardiovasc Med 2021; 8:704208. [PMID: 34513949 PMCID: PMC8430249 DOI: 10.3389/fcvm.2021.704208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.
Collapse
Affiliation(s)
- Congrui Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingsheng Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
23
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|