1
|
Yan J, Zhou T, Yang X, Zhang Z, Li L, Zou Z, Fu Z, Cheng Q. Strong and Tough MXene Bridging-induced Conductive Nacre. Angew Chem Int Ed Engl 2024; 63:e202405228. [PMID: 38744669 DOI: 10.1002/anie.202405228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~282 MPa and ~6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.
Collapse
Affiliation(s)
- Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xinyu Yang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Lei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
2
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy–Nanomica Composites—New Model Insights for Mechanical Properties. Polymers (Basel) 2023; 15:polym15061456. [PMID: 36987236 PMCID: PMC10051337 DOI: 10.3390/polym15061456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers. The presence of micas does not affect the thermal behavior of the nanocomposites, which remains similar to that of the neat epoxy resin. The mechanical characterization of the epoxy resin composites revealed an increased Young’s modulus, whereas tensile strength was reduced. A peridynamics-based representative volume element approach has been implemented to estimate the effective Young’s modulus of the nanomodified materials. The results obtained through this homogenization procedure have been used as input for the analysis of the nanocomposite fracture toughness, which has been carried out by a classical continuum mechanics–peridynamics coupling approach. Comparison with the experimental data confirms the capability of the peridynamics-based strategies to properly model the effective Young’s modulus and fracture toughness of epoxy-resin nanocomposites. Finally, the new mica-based composites exhibit high values of volume resistivity, thus being excellent candidates as insulating materials.
Collapse
|
4
|
Wang H, Lu R, Yan J, Peng J, Tomsia AP, Liang R, Sun G, Liu M, Jiang L, Cheng Q. Tough and Conductive Nacre-inspired MXene/Epoxy Layered Bulk Nanocomposites. Angew Chem Int Ed Engl 2023; 62:e202216874. [PMID: 36460617 DOI: 10.1002/anie.202216874] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
A long-standing quest in materials science has been the development of tough epoxy resin nanocomposites for use in numerous applications. Inspired by nacre, here we report tough and conductive MXene/epoxy layered bulk nanocomposites. The orientation of MXene lamellar scaffolds is enhanced by annealing treatment. The improved interfacial interactions between MXene lamellar scaffold and epoxy through surface chemical modification resulted in a synergistic effect. Tailoring the interlayer spacing of MXene nanosheets to a critical distance resulted in a fracture toughness about eight times higher than that of pure epoxy, surpassing other epoxy nanocomposites. Our nacre-inspired MXene/epoxy layered bulk nanocomposites also show high electrical conductivity that provides self-monitoring capability for structural integrity and exhibits an excellent electromagnetic interference shielding efficiency. Our proposed strategy provides an avenue for fabricating high-performance epoxy nanocomposites.
Collapse
Affiliation(s)
- Huagao Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Rongjian Lu
- Department of Stomatology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, P. R. China
| | - Jia Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jingsong Peng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Antoni P Tomsia
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Rui Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, P. R. China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qunfeng Cheng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Zhang ZB, He Z, Pan XF, Gao HL, Chen SM, Zhu Y, Cao S, Zhao C, Wu S, Gong X, Wu H, Yu SH. Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205219. [PMID: 36404124 DOI: 10.1002/smll.202205219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Lightweight and impact-resistant materials with self-monitoring capability are highly desired for protective applications, but are challenging to be artificially fabricated. Herein, a scalable-manufactured aramid nanofiber (ANF)-based composite combining these key properties is presented. Inspired by the strengthening and toughening mechanisms relying on recoverable interfaces commonly existing in biological composites, mechanically weak but dense hydrogen bonds are introduced into the ANF interfaces to achieve simultaneously enhanced tensile strength (300 MPa), toughness (55 MJ m-3 ), and impact resistance of the nanofibrous composite. The achieved mechanical property combination displays attractive advantages compared with that of most of previously reported nanocomposites. Additionally, the nanofibrous composite is designed with a capability for real-time self-monitoring of its structural safety during both quasi-static tensile and dynamic impact processes, based on the strain/damage-induced resistance variations of a conductive nanowire network inside it. These comprehensive properties enable the present nanofibrous composite with promising potential for protective applications.
Collapse
Affiliation(s)
- Zhen-Bang Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiao-Feng Pan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Ming Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Saisai Cao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chunyu Zhao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shuang Wu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Lu Z, Li N, Geng B, Ma Q, Ning D, E S. Solvent effects on the mechanical properties of aramid nanofibers film. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Pan XF, Yu GH, Gao HL, Wang ZZ, Bao Z, Li X, Yu SH. Large-Scale Production of Rectorite Nanosheets and Their Co-Assembly with Aramid Nanofibers for High-Performance Electrical Insulating Nanopapers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206855. [PMID: 36082538 DOI: 10.1002/adma.202206855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Compared with raw rectorite microplatelets (RMs), rectorite nanosheets (RNs) have considerably greater application prospects in the preparation of advanced composite materials because of their larger aspect ratio, higher surface reactivity, and intrinsically superior mechanical and physical properties. However, the difficulty in the efficient preparation of RNs significantly limits their large-scale applications. Here, a scalable poly(vinylpyrrolidone)-assisted stirring approach is developed to prepare ultrathin RNs from the abundant natural RMs. A higher production rate (≈0.675 g h-1 ) is achieved compared with that of most other nanosheets. Additionally, instead of using conventional time- and energy-consuming high-speed centrifugation, an efficient poly(dienedimethylammonium chloride)-assisted sedimentation strategy is proposed here to rapidly separate the exfoliated RNs from the RN dispersion. Then, the RNs are co-assembled with aramid nanofibers (ANFs) into large-scale nacre-mimetic ANF-RN nanopapers with considerably enhanced mechanical, electrical insulating, and high-temperature-resistant properties compared with pure ANF nanopapers and ANF-RM micropapers. Moreover, these properties are superior to those of previously reported ANF-based nanopapers and commercial insulating micropapers.
Collapse
Affiliation(s)
- Xiao-Feng Pan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guan-Hua Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhe-Zhao Wang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiwei Bao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoguang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
E S, Ma Q, Huang J, Ning D, Lu Z. Polyvinyl alcohol-mediated splitting of Kevlar fibers and superior mechanical performances of the subsequently assembled nanopapers. NANOSCALE 2021; 13:18201-18209. [PMID: 34708855 DOI: 10.1039/d1nr05362k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a composite of aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) was prepared by PVA-assisted splitting of macro Kevlar fibers, which assures the uniform wrapping of PVA chains on the surface of ANFs, thus leading to an enhanced interfacial bonding strength between ANFs and PVA. The morphological characterizations manifest the enhanced diameters of the ANFs after PVA wrapping. The subsequently assembled ANFs/PVA paper shows a strength of 283.25 MPa and a toughness of 32.41 MJ m-3, which are increased by 57% and 152% compared to the pure ANF paper, respectively. The superior mechanical properties are attributed to the strong interfacial bonding strength, enhanced hydrogen bonding interactions, the densification of the materials, and curved fracture paths. Meanwhile, the ANFs/PVA paper also shows robust UV shielding and visible transparency properties, as well as excellent environmental stabilities, especially at high and low temperatures.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|