1
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gambles MT, Sborov D, Shami P, Yang J, Kopeček J. Obinutuzumab-Based Drug-Free Macromolecular Therapeutics Synergizes with Topoisomerase Inhibitors. Macromol Biosci 2024; 24:e2300375. [PMID: 37838941 DOI: 10.1002/mabi.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2)x ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2)x molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca2+ influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Douglas Sborov
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Ong SY, Wang L. Leveraging genomics, transcriptomics and epigenomics to understand chemoimmunotherapy resistance in chronic lymphocytic leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:7. [PMID: 38434768 PMCID: PMC10905154 DOI: 10.20517/cdr.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Patients with chronic lymphocytic leukemia (CLL) have differing clinical outcomes. Recent advances integrating multi-omic data have uncovered molecular subtypes in CLL with different prognostic implications and may allow better prediction of therapy response. While finite-duration chemoimmunotherapy (CIT) has enabled deep responses and prolonged duration of responses in the past, the advent of novel targeted therapy for the treatment of CLL has dramatically changed the therapeutic landscape. In this review, we discuss the latest genomic, transcriptomic, and epigenetic alterations regarded as major drivers of resistance to CIT in CLL. Further advances in genomic medicine will allow for better prediction of response to therapy and provide the basis for rational selection of therapy for long-term remissions with minimal toxicity.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Hematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Lee B, Pierpont T, August A, Richards K. Monoclonal antibodies binding to different epitopes of CD20 differentially sensitize DLBCL to different classes of chemotherapy. Front Oncol 2023; 13:1159484. [PMID: 37601699 PMCID: PMC10436104 DOI: 10.3389/fonc.2023.1159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Rituximab (R), an anti-CD20 monoclonal antibody (mAb) and the world's first approved antibody for oncology patients, was combined with the CHOP chemotherapy regimen and markedly improved the prognosis of all B- cell-derived lymphomas, the most common hematological malignancy worldwide. However, there is a 35% disease recurrence with no advancement in the first-line treatment since R was combined with the archetypal CHOP chemotherapy regimen nearly 30 years ago. There is evidence that R synergizes with chemotherapy, but the pharmacological interactions between R and CHOP or between newer anti-CD20 mAbs and CHOP remain largely unexplored. Methods We used in vitro models to score pharmacological interactions between R and CHOP across various lymphoma cell lines. We compared these pharmacological interactions to ofatumumab, a second-generation anti-CD20 mAb, and CHOP. Lastly, we used RNA-sequencing to characterize the transcriptional profiles induced by these two antibodies and potential molecular pathways that mediate their different effects. Results We discovered vast heterogeneity in the pharmacological interactions between R and CHOP in a way not predicted by the current clinical classification. We then discovered that R and ofatumumab differentially synergize with the cytotoxic and cytostatic capabilities of CHOP in separate distinct subsets of B-cell lymphoma cell lines, thereby expanding favorable immunochemotherapy interactions across a greater range of cell lines beyond those induced by R-CHOP. Lastly, we discovered these two mAbs differentially modulate genes enriched in the JNK and p38 MAPK family, which regulates apoptosis and proliferation. Discussion Our findings were completely unexpected because these mAbs were long considered to be biological and clinical equivalents but, in practice, may perform better than the other in a patient-specific manner. This finding may have immediate clinical significance because both immunochemotherapy combinations are already FDA-approved with no difference in toxicity across phase I, II, and III clinical trials. Therefore, this finding could inform a new precision medicine strategy to provide additional therapeutic benefit to patients with B-cell lymphoma using immunochemotherapy combinations that already meet the clinical standard of care.
Collapse
Affiliation(s)
- Brian Lee
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tim Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kristy Richards
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Patra-Kneuer M, Chang G, Xu W, Augsberger C, Grau M, Zapukhlyak M, Ilieva K, Landgraf K, Mangelberger-Eberl D, Yousefi K, Berning P, Kurz KS, Ott G, Klener P, Khandanpour C, Horna P, Schanzer J, Steidl S, Endell J, Heitmüller C, Lenz G. Activity of tafasitamab in combination with rituximab in subtypes of aggressive lymphoma. Front Immunol 2023; 14:1220558. [PMID: 37600821 PMCID: PMC10433160 DOI: 10.3389/fimmu.2023.1220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Despite recent advances in the treatment of aggressive lymphomas, a significant fraction of patients still succumbs to their disease. Thus, novel therapies are urgently needed. As the anti-CD20 antibody rituximab and the CD19-targeting antibody tafasitamab share distinct modes of actions, we investigated if dual-targeting of aggressive lymphoma B-cells by combining rituximab and tafasitamab might increase cytotoxic effects. Methods Antibody single and combination efficacy was determined investigating different modes of action including direct cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) in in vitro and in vivo models of aggressive B-cell lymphoma comprising diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Results Three different sensitivity profiles to antibody monotherapy or combination treatment were observed in in vitro models: while 1/11 cell lines was primarily sensitive to tafasitamab and 2/11 to rituximab, the combination resulted in enhanced cell death in 8/11 cell lines in at least one mode of action. Treatment with either antibody or the combination resulted in decreased expression of the oncogenic transcription factor MYC and inhibition of AKT signaling, which mirrored the cell line-specific sensitivities to direct cytotoxicity. At last, the combination resulted in a synergistic survival benefit in a PBMC-humanized Ramos NOD/SCID mouse model. Conclusion This study demonstrates that the combination of tafasitamab and rituximab improves efficacy compared to single-agent treatments in models of aggressive B-cell lymphoma in vitro and in vivo.
Collapse
Affiliation(s)
| | - Gaomei Chang
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | | | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | | | | | | | - Kasra Yousefi
- Translational Research, MorphoSys AG, Planegg, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin S. Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czechia
- First Medical Department, Department of Hematology, Charles University General Hospital Prague, Prague, Czechia
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Hematology and Oncology Clinic, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN, United States
| | | | - Stefan Steidl
- Translational Research, MorphoSys AG, Planegg, Germany
| | - Jan Endell
- Translational Research, MorphoSys AG, Planegg, Germany
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
6
|
Herbst SA, White FM. Decrypting the potency of anti-cancer therapeutics by using mass spectrometry to quantify post-translational modifications. CELL REPORTS METHODS 2023; 3:100483. [PMID: 37323574 PMCID: PMC10261922 DOI: 10.1016/j.crmeth.2023.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In a recent issue of Science, Zecha et al.1 present decryptM, an approach aimed at defining the mechanisms of action of anti-cancer therapeutics through systems-level analysis of protein post-translational modifications (PTMs). By using a broad range of concentrations, decryptM generates drug response curves for each detected PTM, enabling identification of drug effects at different therapeutic doses.
Collapse
Affiliation(s)
- Sophie A. Herbst
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M. White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Zecha J, Bayer FP, Wiechmann S, Woortman J, Berner N, Müller J, Schneider A, Kramer K, Abril-Gil M, Hopf T, Reichart L, Chen L, Hansen FM, Lechner S, Samaras P, Eckert S, Lautenbacher L, Reinecke M, Hamood F, Prokofeva P, Vornholz L, Falcomatà C, Dorsch M, Schröder A, Venhuizen A, Wilhelm S, Médard G, Stoehr G, Ruland J, Grüner BM, Saur D, Buchner M, Ruprecht B, Hahne H, The M, Wilhelm M, Kuster B. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 2023; 380:93-101. [PMID: 36926954 PMCID: PMC7615311 DOI: 10.1126/science.ade3925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.
Collapse
Affiliation(s)
- Jana Zecha
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Florian P. Bayer
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Svenja Wiechmann
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Julia Woortman
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Nicola Berner
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Julian Müller
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Annika Schneider
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Karl Kramer
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Mar Abril-Gil
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Thomas Hopf
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Leonie Reichart
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Lin Chen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Fynn M. Hansen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Severin Lechner
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Patroklos Samaras
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Stephan Eckert
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Ludwig Lautenbacher
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Maria Reinecke
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Firas Hamood
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Polina Prokofeva
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Larsen Vornholz
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Chiara Falcomatà
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, 80336 Munich, Germany
| | - Madeleine Dorsch
- West German Cancer Center, University Hospital Essen, Department of Medical Oncology, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Ayla Schröder
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Anton Venhuizen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Stephanie Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Guillaume Médard
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Gabriele Stoehr
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Jürgen Ruland
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), 81675 Munich, Germany
| | - Barbara M. Grüner
- West German Cancer Center, University Hospital Essen, Department of Medical Oncology, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Dieter Saur
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, 80336 Munich, Germany
| | - Maike Buchner
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Benjamin Ruprecht
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Matthew The
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Mathias Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Bernhard Kuster
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| |
Collapse
|
8
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
9
|
Qualls D, Kumar A, Epstein-Peterson Z. Targeting the immune microenvironment in mantle cell lymphoma: implications for current and emerging therapies. Leuk Lymphoma 2022; 63:2515-2527. [PMID: 35704674 PMCID: PMC9741766 DOI: 10.1080/10428194.2022.2086244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Mantle cell lymphoma (MCL) is a morphologically and phenotypically heterogeneous subtype of non-Hodgkin lymphoma, and has historically been associated with poor outcomes. However, recent advances in our understanding of this disease have yielded new targeted and immune-based therapies with promising activity. Immune-based therapies such as monoclonal antibodies, immunomodulators, and CAR T cells have significantly improved outcomes and are now standard of care in MCL. In this review, we describe our current understanding of the immune microenvironment of MCL, discuss current immunotherapeutic approaches, and highlight promising novel immune-based therapies and combination therapies that may further improve outcomes for patients with MCL.
Collapse
Affiliation(s)
- David Qualls
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| | - Anita Kumar
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| | - Zachary Epstein-Peterson
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| |
Collapse
|
10
|
Edelmann J. NOTCH1 Signalling: A key pathway for the development of high-risk chronic lymphocytic leukaemia. Front Oncol 2022; 12:1019730. [DOI: 10.3389/fonc.2022.1019730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 is a cell surface receptor that releases its intracellular domain as transcription factor upon activation. With the advent of next-generation sequencing, the NOTCH1 gene was found recurrently mutated in chronic lymphocytic leukaemia (CLL). Here, virtually all NOTCH1 mutations affect the protein’s PEST-domain and impair inactivation and degradation of the released transcription factor, thus increasing NOTCH1 signalling strength. Besides sequence alterations directly affecting the NOTCH1 gene, multiple other genomic and non-genomic alterations have by now been identified in CLL cells that could promote an abnormally strong NOTCH1 signalling strength. This renders NOTCH1 one of the key signalling pathways in CLL pathophysiology. The frequency of genomic alterations affecting NOTCH1 signalling is rising over the CLL disease course culminating in the observation that besides TP53 loss, 8q gain and CDKN2A/B loss, NOTCH1 mutation is a hallmark genomic alteration associated with transformation of CLL into an aggressive lymphoma (Richter transformation). Both findings associate de-regulated NOTCH1 signalling with the development of high-risk CLL. This narrative review provides data on the role of NOTCH1 mutation for CLL development and progression, discusses the impact of NOTCH1 mutation on treatment response, gives insight into potential modes of NOTCH1 pathway activation and regulation, summarises alterations that have been discussed to contribute to a de-regulation of NOTCH1 signalling in CLL cells and provides a perspective on how to assess NOTCH1 signalling in CLL samples.
Collapse
|
11
|
Mamidi MK, Mahmud H, Maiti GP, Mendez MT, Fernandes SM, Vesely SK, Holter-Chakrabarty J, Brown JR, Ghosh AK. Idelalisib activates AKT via increased recruitment of PI3Kδ/PI3Kβ to BCR signalosome while reducing PDK1 in post-therapy CLL cells. Leukemia 2022; 36:1806-1817. [PMID: 35568768 PMCID: PMC10874218 DOI: 10.1038/s41375-022-01595-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Idelalisib targets PI3Kδ in the BCR pathway generating only a partial response in CLL patients, indicating that the leukemic cells may have evolved escape signals. Indeed, we detected increased activation of AKT accompanied by upregulation of MYC/BCL2 in post-therapy CLL cells from patients treated with idelalisib/ofatumumab. To unravel the mechanism of increased AKT-activation, we studied the impact of idelalisib on a CLL-derived cell line, MEC1, as a model. After an initial inhibition, AKT-activation level was restored in idelalisib-treated MEC1 cells in a time-dependent manner. As BCAP (B-cell adaptor for PI3K) and CD19 recruit PI3Kδ to activate AKT upon BCR-stimulation, we examined if idelalisib-treatment altered PI3Kδ-recruitment. Immunoprecipitation of BCAP/CD19 from idelalisib-treated MEC1 cells showed increased recruitment of PI3Kδ in association with PI3Kβ, but not PI3Kα or PI3Kγ and that, targeting both PI3Kδ with PI3Kβ inhibited AKT-reactivation. We detected similar, patient-specific recruitment pattern of PI3K-isoforms by BCAP/CD19 in post-idelalisib CLL cells with increased AKT-activation. Interestingly, a stronger inhibitory effect of idelalisib on P-AKT (T308) than S473 was discernible in idelalisib-treated cells despite increased recruitment of PI3Kδ/PI3Kβ and accumulation of phosphatidylinositol-3,4,5-triphosphate; which could be attributed to reduced PDK1 activity. Thus, administration of isoform-specific inhibitors may prove more effective strategy for treating CLL patients.
Collapse
Affiliation(s)
- Murali K Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guru P Maiti
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mariana T Mendez
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stacey M Fernandes
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Jennifer R Brown
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Asish K Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
13
|
Friend BD, Muhsen IN, Patel S, Hill LC, Lulla P, Ramos CA, Pingali SR, Kamble RT, John TD, Salem B, Bhar S, Doherty EE, Craddock J, Sasa G, Wu M, Wang T, Martinez C, Krance RA, Heslop HE, Carrum G. Rituximab as adjunctive therapy to BEAM conditioning for autologous stem cell transplantation in Hodgkin lymphoma. Bone Marrow Transplant 2022; 57:579-585. [PMID: 35105965 DOI: 10.1038/s41409-022-01599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
While high-dose chemotherapy followed by autologous stem cell transplantation (ASCT) leads to improved disease-free survival (DFS) for children and adults with relapsed/refractory Hodgkin lymphoma (HL), relapse remains the most frequent cause of mortality post-transplant. Rituximab has been successfully incorporated into regimens for other B-cell lymphomas, yet there have been limited studies of rituximab in HL patients. We hypothesized that adding rituximab to BEAM (carmustine, etoposide, cytarabine, melphalan) conditioning would reduce relapse risk in HL patients post-transplant. Here, we retrospectively review the outcomes of patients with relapsed/refractory HL who received rituximab in addition to BEAM. The primary outcome was DFS. Our cohort included 96 patients with a median age of 28 years (range, 6-76). Majority of patients (57%) were diagnosed with advanced (Stage III-IV) disease, and 62% were PET negative pre-transplant. DFS was 91.5% at 1 year [95% CI 86-98%], and 78% at 3 years [95% CI 68-88%]. NRM was 0% and 3.5% at 1-year [95% CI 0-3%] and 3-years [95% CI 0-8.5%], respectively. 25% of patients developed delayed neutropenia, with 7% requiring infection-related hospitalizations, and one death. We have demonstrated excellent outcomes for patients receiving rituximab with BEAM conditioning for relapsed/refractory HL. Future comparative studies are needed to better determine whether rituximab augments outcomes post-transplant.
Collapse
Affiliation(s)
- Brian D Friend
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Ibrahim N Muhsen
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shreeya Patel
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - LaQuisa C Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | | | - Rammurti T Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Tami D John
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Baheyeldin Salem
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Saleh Bhar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Erin E Doherty
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - John Craddock
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Ghadir Sasa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Mengfen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Are we finally getting personal? Moving towards a personalized approach in chronic lymphocytic leukemia. Semin Cancer Biol 2022; 84:329-338. [DOI: 10.1016/j.semcancer.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022]
|