1
|
Bachoo S, Gudgeon N, Mann R, Stavrou V, Bishop EL, Kelly A, Uribe AH, Loeliger J, Frick C, Maddocks ODK, Lavender P, Hess C, Dimeloe S. IL-7 promotes integrated glucose and amino acid sensing during homeostatic CD4 + T cell proliferation. Cell Rep 2025; 44:115199. [PMID: 39799568 DOI: 10.1016/j.celrep.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
Interleukin (IL)-7 promotes T cell expansion during lymphopenia. We studied the metabolic basis in CD4+ T cells, observing increased glucose usage for nucleotide synthesis and oxidation in the tricarboxylic acid (TCA) cycle. Unlike other TCA metabolites, glucose-derived citrate does not accumulate upon IL-7 exposure, indicating diversion into other processes. In agreement, IL-7 promotes glucose-dependent histone acetylation and chromatin accessibility, notable at the loci of the amino acid-sensing Ragulator complex. Consistently, the expression of its subunit late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (LAMTOR5) is promoted by IL-7 in a glucose-dependent manner, and glucose availability determines amino acid-dependent mechanistic target of rapamycin (mTOR) activation, confirming integrated nutrient sensing. LAMTOR5 deletion impairs IL-7-mediated T cell expansion, establishing that glycolysis in the absence of Ragulator activation is insufficient to support this. Clinically, CD4+ T cells from stem cell transplant recipients demonstrate coordinated upregulation of glycolytic and TCA cycle enzymes, amino acid-sensing machinery, and mTOR targets, highlighting the potential to therapeutically target this pathway to fine-tune lymphopenia-induced T cell proliferation.
Collapse
Affiliation(s)
- Seema Bachoo
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nancy Gudgeon
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca Mann
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria Stavrou
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Emma L Bishop
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Audrey Kelly
- School of Immunology & Microbial Sciences, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Jordan Loeliger
- Immunobiology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Corina Frick
- Immunobiology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Paul Lavender
- School of Immunology & Microbial Sciences, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Christoph Hess
- Immunobiology, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah Dimeloe
- School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Kasuya H, Zhang H, Ito Y, Yoshikawa T, Nakashima T, Li Y, Matsukawa T, Inoue S, Kagoya Y. High CD62L expression predicts the generation of chimeric antigen receptor T cells with potent effector functions. Int Immunol 2024; 36:353-364. [PMID: 38517027 DOI: 10.1093/intimm/dxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.
Collapse
Affiliation(s)
- Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Haosong Zhang
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Ito
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Yoshikawa
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Nakashima
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Yang Li
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Matsukawa
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Inoue
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Kagoya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Verma K, Croft W, Greenwood D, Stephens C, Malladi R, Nunnick J, Zuo J, Kinsella FAM, Moss P. Early inflammatory markers as prognostic indicators following allogeneic stem cell transplantation. Front Immunol 2024; 14:1332777. [PMID: 38235129 PMCID: PMC10791949 DOI: 10.3389/fimmu.2023.1332777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Allogeneic stem cell transplantation is used widely in the treatment of hematopoietic malignancy although graft versus host disease and relapse remain major complications. We measured the serum protein expression of 92 inflammation-related markers from 49 patients at Day 0 (D0) and 154 patients at Day 14 (D14) following transplantation and related values to subsequent clinical outcomes. Low levels of 7 proteins at D0 were linked to GvHD whilst high levels of 7 proteins were associated with relapse. The concentration of 38 proteins increased over 14 days and higher inflammatory response at D14 was strongly correlated with patient age. A marked increment in protein concentration during this period associated with GvHD but reduced risk of disease relapse, indicating a link with alloreactive immunity. In contrast, patients who demonstrated low dynamic elevation of inflammatory markers during the first 14 days were at increased risk of subsequent disease relapse. Multivariate time-to-event analysis revealed that high CCL23 at D14 was associative of AGvHD, CXCL10 with reduced rate of relapse, and high PD-L1 with reduced overall survival. This work identifies a dynamic pattern of inflammatory biomarkers in the very early post-transplantation period and reveals early protein markers that may help to guide patient management.
Collapse
Affiliation(s)
- Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - David Greenwood
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ram Malladi
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Jane Nunnick
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A. M. Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
4
|
Johnson RL, Ganesan S, Thangavelu A, Theophilou G, de Jong D, Hutson R, Nugent D, Broadhead T, Laios A, Cummings M, Orsi NM. Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers (Basel) 2023; 15:4632. [PMID: 37760602 PMCID: PMC10527181 DOI: 10.3390/cancers15184632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Results of recent clinical trials using the immune check point inhibitors (ICI) pembrolizumab or dostarlimab with/without lenvatinib has led to their approval for specific molecular subgroups of advanced recurrent endometrial cancer (EC). Herein, we summarise the clinical data leading to this first tissue-agnostic approval. As this novel therapy is not yet available in the United Kingdom standard care setting, we explore the strengths, weaknesses, opportunities, and threats (SWOT) of ICI treatment in EC. Major databases were searched focusing on clinical trials using programmed cell death protein 1 (PD-1) and its ligand (PD-L1) ICI which ultimately contributed to anti-PD-1 approval in EC. We performed a data quality assessment, reviewing survival and safety analysis. We included 15 studies involving 1609 EC patients: 458 with mismatch repair deficiency (MMRd)/microsatellite instability-high (MSI-H) status and 1084 with mismatch repair proficiency/microsatellite stable (MMRp/MSS) status. Pembrolizumab/dostarlimab have been approved for MMRd ECs, with the addition of lenvatinib for MMRp cases in the recurrent setting. Future efforts will focus on the pathological assessment of biomarkers to determine molecular phenotypes that correlate with response or resistance to ICI in order to identify patients most likely to benefit from this treatment.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Subhasheenee Ganesan
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Amudha Thangavelu
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Georgios Theophilou
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Diederick de Jong
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Richard Hutson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David Nugent
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Timothy Broadhead
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Alexandros Laios
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Michele Cummings
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
5
|
Pham TN, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res 2023; 42:50. [PMID: 36814272 PMCID: PMC9945629 DOI: 10.1186/s13046-023-02621-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France ,grid.460771.30000 0004 1785 9671Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France
| | - Julie Coupey
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Serge M. Candeias
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054 Grenoble, France
| | - Viktoriia Ivanova
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000, Caen, France.
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France. .,Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France.
| |
Collapse
|
6
|
Post-Treatment Neutrophil and Lymphocyte Counts Predict Progression-Free Survival Following First-Line Chemotherapy in Hodgkin's Lymphoma. Hematol Rep 2023; 15:108-118. [PMID: 36810555 PMCID: PMC9944084 DOI: 10.3390/hematolrep15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Hodgkin's lymphoma carries an excellent prognosis with modern chemotherapy, but a significant proportion of patients remain refractory to or relapse after first-line treatment. Immunological changes post-treatment, such as chemotherapy-induced neutropenia (CIN) or lymphopenia, have shown prognostic significance in multiple tumor types. Our study aims to investigate the prognostic value of immunologic changes in Hodgkin's lymphoma by examining the post-treatment lymphocyte count (pALC), neutrophil count (pANC) and the neutrophil-lymphocyte ratio (pNLR). Patients treated for classical Hodgkin's lymphoma at the National Cancer Centre Singapore using ABVD-based regimens were retrospectively analyzed. An optimal cut-off value for high pANC, low pALC and high pNLR in predicting progression-free survival was determined by receiver operating curve analysis. Survival analysis was performed using the Kaplan-Meier method and multivariable Cox proportional models. Overall OS and PFS were excellent, with a 5-year OS of 99.2% and a 5-year PFS of 88.2%. Poorer PFS was associated with high pANC (HR 2.99, p = 0.0392), low pALC (HR 3.95, p = 0.0038) and high pNLR (p = 0.0078). In conclusion, high pANC, low pALC and high pNLR confer a poorer prognosis for Hodgkin's lymphoma. Future studies should evaluate the potential of improving treatment outcomes by the adjustment of chemotherapy dose intensity based on post-treatment blood counts.
Collapse
|
7
|
Verma K, Croft W, Pearce H, Zuo J, Stephens C, Nunnick J, Kinsella FA, Malladi R, Moss P. Early expression of CD94 and loss of CD96 on CD8+ T cells after allogeneic stem cell tranplantation is predictive of subsequent relapse and survival. Haematologica 2023; 108:433-443. [PMID: 35924575 PMCID: PMC9890008 DOI: 10.3324/haematol.2021.280497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic stem cell transplantation is used widely in the treatment of hematopoietic malignancy. However, relapse of malignant disease is the primary cause of treatment failure and reflects loss of immunological graft-versus-leukemia effect. We studied the transcriptional and phenotypic profile of CD8+ T cells in the first month following transplantation and related this to risk of subsequent relapse. Single cell transcriptional profiling identified five discrete CD8+ T-cell clusters. High levels of T-cell activation and acquisition of a regulatory transcriptome were apparent in patients who went on to suffer disease relapse. A relapse-associated gene signature of 47 genes was then assessed in a confirmation cohort of 34 patients. High expression of the inhibitory receptor CD94/NKG2A on CD8+ T cells within the first month was associated with 4.8 fold increased risk of relapse and 2.7 fold reduction in survival. Furthermore, reduced expression of the activatory molecule CD96 was associated with 2.2 fold increased risk of relapse and 1.9 fold reduction in survival. This work identifies CD94 and CD96 as potential targets for CD8-directed immunotherapy in the very early phase following allogeneic transplantation with the potential to reduce long term relapse rates and improve patient survival.
Collapse
Affiliation(s)
- Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Computational Biology, University of Birmingham, Birmingham
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Jane Nunnick
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham
| | - Francesca Am Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham
| | - Ram Malladi
- Addenbrookes Hospital, Cambridge University Hospitals
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham.
| |
Collapse
|
8
|
Cheng B, Ding K, Chen P, Ji J, Luo T, Guo X, Qiu W, Ma C, Meng X, Wang J, Yu J, Liu Y. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer. Cancer Commun (Lond) 2022; 42:17-36. [PMID: 34981670 PMCID: PMC8753312 DOI: 10.1002/cac2.12244] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/23/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Background Second‐generation programmed cell death‐protein 1/programmed death‐ligand 1 (PD‐1/PD‐L1) inhibitors, such as bintrafusp alfa (M7824), SHR‐1701, and YM101, have been developed to simultaneously block PD‐1/PD‐L1 and transforming growth factor‐beta/transforming growth factor‐beta receptor (TGF‐β/TGF‐βR). Consequently, it is necessary to identify predictive factors of lung cancer patients who are not only resistant to PD‐1/PD‐L1 inhibitors but also sensitive to bifunctional drugs. The purpose of this study was to search for such predictors. Methods Multivariable Cox regression was used to study the association between the clinical outcome of treatment with PD‐1/PD‐L1 inhibitors and lymphocyte recovery after lymphopenia in lung cancer patients. Murine CMT167 lung cancer cells were engineered to express the firefly luciferase gene and implanted orthotopically in the lung of syngeneic mice. Bioluminescence imaging, flow cytometry, and immunohistochemistry were employed to determine response to immunotherapy and function of tumor‐infiltrating immune cells. Results For lung cancer patients treated with anti‐PD‐1/PD‐L1 antibodies, poor lymphocyte recovery was associated with a shorter progression‐free survival (PFS; P < 0.001), an accumulation of regulatory T cells (Tregs), and an elimination of CD8+ T cells in the peripheral blood. Levels of CD8+ T cells and Treg cells were also imbalanced in the tumors and peripheral immune organs of mice with poor lymphocyte recovery after chemotherapy. Moreover, these mice failed to respond to anti‐PD‐1 antibodies but remained sensitive to the anti‐PD‐L1/TGF‐βR fusion protein (SHR‐1701). Consistently, SHR‐1701 but not anti‐PD‐1 antibodies, markedly enhanced IFN‐γ production and Ki‐67 expression in peripheral CD8+ T cells from patients with impaired lymphocyte recovery. Conclusions Lung cancer patients with poor lymphocyte recovery and suffering from persistent lymphopenia after previous chemotherapy are resistant to anti‐PD‐1/PD‐L1 antibodies but might be sensitive to second‐generation agents such as SHR‐1701.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China.,Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, P. R. China
| | - Tao Luo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012, P. R. China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China.,Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yuan Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Shandong Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
9
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|