1
|
Shanker GS, Ghatak A, Binyamin S, Balilty R, Shimoni R, Liberman I, Hod I. Regulation of Catalyst Immediate Environment Enables Acidic Electrochemical Benzyl Alcohol Oxidation to Benzaldehyde. ACS Catal 2024; 14:5654-5661. [PMID: 38660611 PMCID: PMC11036388 DOI: 10.1021/acscatal.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H2 generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment. Specifically, coating a Bi-based electrocatalyst with a thin layer of metal-organic framework (MOF) substantially improves its performance toward benzyl alcohol electro-oxidation to benzaldehyde in a 0.1 M H2SO4 electrolyte. Detailed analysis reveals that the MOF adlayer influences catalysis by increasing the reactivity of surface hydroxides as well as weakening the catalyst-benzaldehyde binding strength. In turn, low-potential (0.65 V) cathodic H2 evolution was obtained through coupling it with anodic benzyl alcohol electro-oxidation. Consequently, the presented approach could be implemented in a wide range of electrocatalytic oxidation reactions for energy-conversion application.
Collapse
Affiliation(s)
- G. Shiva Shanker
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Binyamin
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
2
|
Akir S, Azadmanjiri J, Antonatos N, Děkanovský L, Roy PK, Mazánek V, Lontio Fomekong R, Regner J, Sofer Z. Atomic-layered V 2C MXene containing bismuth elements: 2D/0D and 2D/2D nanoarchitectonics for hydrogen evolution and nitrogen reduction reaction. NANOSCALE 2023. [PMID: 37464871 DOI: 10.1039/d3nr01144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 μg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.
Collapse
Affiliation(s)
- Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roussin Lontio Fomekong
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Salari Sedigh S, Gholipour A, Zandi M, Qubais Saeed B, Al-Naqeeb BZT, Abdullah Al-Tameemi NM, Nassar MF, Amini P, Yasamineh S, Gholizadeh O. The role of bismuth nanoparticles in the inhibition of bacterial infection. World J Microbiol Biotechnol 2023; 39:190. [PMID: 37156882 PMCID: PMC10166694 DOI: 10.1007/s11274-023-03629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Bismuth (Bi) combinations have been utilized for the treatment of bacterial infections. In addition, these metal compounds are most frequently utilized for treating gastrointestinal diseases. Usually, Bi is found as bismuthinite (Bi sulfide), bismite (Bi oxide), and bismuthite (Bi carbonate). Newly, Bi nanoparticles (BiNP) were produced for CT imaging or photothermal treatment and nanocarriers for medicine transfer. Further benefits, such as increased biocompatibility and specific surface area, are also seen in regular-size BiNPs. Low toxicity and ecologically favorable attributes have generated interest in BiNPs for biomedical approaches. Moreover, BiNPs offer an option for treating multidrug-resistant (MDR) bacteria because they communicate directly with the bacterial cell wall, induce adaptive and inherent immune reactions, generate reactive oxygen compounds, limit biofilm production, and stimulate intracellular impacts. In addition, BiNPs in amalgamation with X-ray therapy as well as have the capability to treat MDR bacteria. BiNPs as photothermal agents can realize the actual antibacterial through continuous efforts of investigators in the near future. In this article, we summarized the properties of BiNPs, and different preparation methods, also reviewed the latest advances in the BiNPs' performance and their therapeutic effects on various bacterial infections, such as Helicobacter pylori, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.
Collapse
Affiliation(s)
- Somaye Salari Sedigh
- Department of Periodontology Dentistry, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Arsalan Gholipour
- Nanotechnology Research Institute, School of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mahdiyeh Zandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Balsam Qubais Saeed
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | | | | | - Maadh Fawzi Nassar
- Integrated Chemical Biophysics Research, Faculty of Science, University Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Qutob M, Shakeel F, Alam P, Alshehri S, Ghoneim MM, Rafatullah M. A review of radical and non-radical degradation of amoxicillin by using different oxidation process systems. ENVIRONMENTAL RESEARCH 2022; 214:113833. [PMID: 35839907 DOI: 10.1016/j.envres.2022.113833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds have piqued the interest of researchers due to an increase in their demand, which increases the possibility of leakage into the environment. Amoxicillin (AMX) is a penicillin derivative used for the treatment of infections caused by gram-positive bacteria. AMX has a low metabolic rate in the human body, and around 80-90% is unmetabolized. As a result, AMX residuals should be treated immediately to avoid further accumulation in the environment. Advanced oxidation process techniques are an efficient way to degrade AMX. This review attempts to collect, organize, summarize, and analyze the most up to date research linked to the degradation of AMX by different advanced oxidation process systems including photocatalytic, ultrasonic, electro-oxidation, and advanced oxidation process-based on partials. The main topics investigated in this review are degradation mechanism, degradation efficiency, catalyst stability, the formation of AMX by-products and its toxicity, in addition, the influence of different experimental conditions was discussed such as pH, temperature, scavengers, the concentration of amoxicillin, oxidants, catalyst, and doping ratio. The degradation of AMX could be inhibited by very high values of pH, temperature, AMX concentration, oxidants concentration, catalyst concentration, and doping ratio. Several AMX by-products were discovered after oxidation treatment, and several of them had lower or same values of LC50 (96 h) fathead minnow of AMX itself, such as m/z 384, 375, 349, 323, 324, 321, 318, with prediction values of 0.70, 1.10, 1.10 0.42, 0.42, 0.42, and 0.42 mg/L, respectively. We revealed that there is no silver bullet system to oxidize AMX from an aqueous medium. However, it is recommended to apply hybrid systems such as Photo-electro, Photo-Fenton, Electro-Fenton, etc. Hybrid systems are capable to cover the drawbacks of the single system. This review may provide important information, as well as future recommendations, for future researchers interested in treating AMX using various AOP systems, allowing them to improve the applicability of their systems and successfully oxidize AMX from an aqueous medium.
Collapse
Affiliation(s)
- Mohammad Qutob
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|