1
|
Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó Í, Mayer MI, Zelenak Z, Nyiri G, Hangya B. Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience. Nat Commun 2024; 15:4768. [PMID: 38849336 PMCID: PMC11161511 DOI: 10.1038/s41467-024-48755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Victoria Lyakhova
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Írisz Szabó
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Zsofia Zelenak
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary.
| |
Collapse
|
2
|
Hegedüs P, Sviatkó K, Király B, Martínez-Bellver S, Hangya B. Cholinergic activity reflects reward expectations and predicts behavioral responses. iScience 2022; 26:105814. [PMID: 36636356 PMCID: PMC9830220 DOI: 10.1016/j.isci.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Biological Physics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Corresponding author
| |
Collapse
|
3
|
Dusa D, Ollmann T, Kállai V, Lénárd L, Kertes E, Berta B, Szabó Á, László K, Gálosi R, Zagoracz O, Karádi Z, Péczely L. The antipsychotic drug sulpiride in the ventral pallidum paradoxically impairs learning and induces place preference. Sci Rep 2022; 12:19247. [PMID: 36357539 PMCID: PMC9649625 DOI: 10.1038/s41598-022-23450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Sulpiride, as a D2-like dopamine (DA) receptor (D2R) antagonist, is an important antipsychotic drug in the treatment of schizophrenia. Recently, we have shown that the activation of D2Rs in the ventral pallidum (VP) modulates the activity of the ventral tegmental area (VTA) DAergic neurons. According to our hypothesis, intra-VP sulpiride can influence the motivational and learning processes, pervasively modifying the behavior of examined animals. In the present study, sulpiride was microinjected into the VP of male Wistar rats in three different doses. Morris water maze (MWM) test was applied to investigate the effects of sulpiride on spatial learning, while conditioned place preference (CPP) test was used to examine the potential rewarding effect of the drug. In order to show, whether the animals can associate the rewarding effect with an area which can be recognized only on its spatial location, we introduced a modified version of the CPP paradigm, the spatial CPP test. Our results show that the intra-VP sulpiride dose-dependently impairs learning processes. However, the largest dose of sulpiride induces place preference. Results of the spatial CPP paradigm demonstrate that the animals cannot associate the rewarding effect of the drug with the conditioning area based on its spatial location. In the CPP paradigm, locomotor activity decrease could be observed in the sulpiride-treated rats, likely because of a faster habituation with the conditioning environment. In summary, we can conclude that intra-VP sulpiride has a dual effect: it diminishes the hippocampus-dependent spatial learning processes, in addition, it has a dose-dependent rewarding effect.
Collapse
Affiliation(s)
- Daniella Dusa
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Veronika Kállai
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Kertes
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Beáta Berta
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Szabó
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
| | - Kristóf László
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Olga Zagoracz
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - László Péczely
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, Pécs, 7602, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| |
Collapse
|
4
|
Hegedüs P, Velencei A, Belval CHD, Heckenast J, Hangya B. Training protocol for probabilistic Pavlovian conditioning in mice using an open-source head-fixed setup. STAR Protoc 2021; 2:100795. [PMID: 34522902 PMCID: PMC8424585 DOI: 10.1016/j.xpro.2021.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High throughput, temporally controlled, reproducible quantitative behavioral assays are important for understanding the neural mechanisms underlying behavior. Here, we provide a step-by-step training protocol for a probabilistic Pavlovian conditioning task, where two auditory cues predict probabilistic outcomes with different contingencies. This protocol allows us to study the differential behavioral and neuronal correlates of expected and surprising outcomes. It has been tested in combination with chronic in vivo electrophysiological recordings and optogenetic manipulations in ChAT-Cre and PV-Cre mouse lines. For complete details on the use and execution of this protocol, please refer to Hegedüs et al. (2021). We provide a training protocol for a probabilistic Pavlovian conditioning task in mice Two auditory cues predict probabilistic outcomes with different contingencies Possible to combine with chronic in vivo electrophysiology and optogenetics Ideal for testing behavioral and neural correlates of expected and surprising outcomes
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Claire-Hélène de Belval
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Interdisciplinary Masters' in Life Sciences, Ecole Normale Supérieure, Paris, France
| | - Julia Heckenast
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|