1
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Guo W, Liu Y, Han Y, Tang H, Fan X, Wang C, Chen PR. Amplifiable protein identification via residue-resolved barcoding and composition code counting. Natl Sci Rev 2024; 11:nwae183. [PMID: 39055168 PMCID: PMC11272068 DOI: 10.1093/nsr/nwae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Ultrasensitive protein identification is of paramount importance in basic research and clinical diagnostics but remains extremely challenging. A key bottleneck in preventing single-molecule protein sequencing is that, unlike the revolutionary nucleic acid sequencing methods that rely on the polymerase chain reaction (PCR) to amplify DNA and RNA molecules, protein molecules cannot be directly amplified. Decoding the proteins via amplification of certain fingerprints rather than the intact protein sequence thus represents an appealing alternative choice to address this formidable challenge. Herein, we report a proof-of-concept method that relies on residue-resolved DNA barcoding and composition code counting for amplifiable protein fingerprinting (AmproCode). In AmproCode, selective types of residues on peptides or proteins are chemically labeled with a DNA barcode, which can be amplified and quantified via quantitative PCR. The operation generates a relative ratio as the residue-resolved 'composition code' for each target protein that can be utilized as the fingerprint to determine its identity from the proteome database. We developed a database searching algorithm and applied it to assess the coverage of the whole proteome and secretome via computational simulations, proving the theoretical feasibility of AmproCode. We then designed the residue-specific DNA barcoding and amplification workflow, and identified different synthetic model peptides found in the secretome at as low as the fmol/L level for demonstration. These results build the foundation for an unprecedented amplifiable protein fingerprinting method. We believe that, in the future, AmproCode could ultimately realize single-molecule amplifiable identification of trace complex samples without further purification, and it may open a new avenue in the development of next-generation protein sequencing techniques.
Collapse
Affiliation(s)
- Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ohayon S, Taib L, Verma NC, Iarossi M, Bhattacharya I, Marom B, Huttner D, Meller A. Full-Length Single Protein Molecules Tracking and Counting in Thin Silicon Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314319. [PMID: 38461367 DOI: 10.1002/adma.202314319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Emerging single-molecule protein sensing techniques are ushering in a transformative era in biomedical research. Nevertheless, challenges persist in realizing ultra-fast full-length protein sensing, including loss of molecular integrity due to protein fragmentation, biases introduced by antibodies affinity, identification of proteoforms, and low throughputs. Here, a single-molecule method for parallel protein separation and tracking is introduced, yielding multi-dimensional molecular properties used for their identification. Proteins are tagged by chemo-selective dual amino-acid specific labels and are electrophoretically separated by their mass/charge in custom-designed thin silicon channel with subwavelength height. This approach allows analysis of thousands of individual proteins within a few minutes by tracking their motion during the migration. The power of the method is demonstrated by quantifying a cytokine panel for host-response discrimination between viral and bacterial infections. Moreover, it is shown that two clinically-relevant splice isoforms of Vascular endothelial growth factor (VEGF) can be accurately quantified from human serum samples. Being non-destructive and compatible with full-length intact proteins, this method opens up ways for antibody-free single-protein molecule quantification.
Collapse
Affiliation(s)
- Shilo Ohayon
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Liran Taib
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | | | - Marzia Iarossi
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Ivy Bhattacharya
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Barak Marom
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Diana Huttner
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Amit Meller
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion-IIT, Haifa, 3200003, Israel
| |
Collapse
|
4
|
Penedo JC. Topographic fingerprinting of single proteins and proteoforms. NATURE NANOTECHNOLOGY 2024; 19:580-581. [PMID: 38528111 DOI: 10.1038/s41565-024-01638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- J Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, School of Physics and Astronomy and School of Biology, University of St. Andrews, St Andrews, UK.
| |
Collapse
|
5
|
Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim SH, de Agrela Pinto C, Wu Y, Boons GJ, Pabst M, de Ridder D, Joo C. Full-length single-molecule protein fingerprinting. NATURE NANOTECHNOLOGY 2024; 19:652-659. [PMID: 38351230 DOI: 10.1038/s41565-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.
Collapse
Affiliation(s)
- Mike Filius
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Carlos de Lannoy
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zeshi Li
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sung Hyun Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang M, Tang C, Wang Z, Chen S, Zhang D, Li K, Sun K, Zhao C, Wang Y, Xu M, Dai L, Lu G, Shi H, Ren H, Chen L, Geng J. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat Methods 2024; 21:609-618. [PMID: 38443507 PMCID: PMC11009107 DOI: 10.1038/s41592-024-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Zichun Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanchuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, China.
| |
Collapse
|
7
|
Filius M, van Wee R, Joo C. Single-Molecule FRET X. Methods Mol Biol 2024; 2694:203-213. [PMID: 37824006 DOI: 10.1007/978-1-0716-3377-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon that has been repurposed as a biophysical tool to measure nanometer distances. With FRET by DNA eXchange, or FRET X, many points of interest (POIs) in a single object can be probed, overcoming a major limitation of conventional single-molecule FRET. In FRET X, short fluorescently labeled DNA imager strands specifically and transiently bind their complementary docking strands on a target molecule, such that at most a single FRET pair is formed at each point in time and multiple POIs on a single molecule can be readily probed. Here, we describe the sample preparation, image acquisition, and data analysis for structural analysis of DNA nanostructures with FRET X.
Collapse
Affiliation(s)
- Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
8
|
KIM S, KAMARULZAMAN L, TANIGUCHI Y. Recent methodological advances towards single-cell proteomics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:306-327. [PMID: 37673661 PMCID: PMC10749393 DOI: 10.2183/pjab.99.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
Studying the central dogma at the single-cell level has gained increasing attention to reveal hidden cell lineages and functions that cannot be studied using traditional bulk analyses. Nonetheless, most single-cell studies exploiting genomic and transcriptomic levels fail to address information on proteins that are central to many important biological processes. Single-cell proteomics enables understanding of the functional status of individual cells and is particularly crucial when the specimen is composed of heterogeneous entities of cells. With the growing importance of this field, significant methodological advancements have emerged recently. These include miniaturized and automated sample preparation, multi-omics analyses, and combined analyses of multiple techniques such as mass spectrometry and microscopy. Moreover, artificial intelligence and single-molecule detection technologies have advanced throughput and improved sensitivity limitations, respectively, over conventional methods. In this review, we summarize cutting-edge methodologies for single-cell proteomics and relevant emerging technologies that have been reported in the last 5 years, and provide an outlook on this research field.
Collapse
Affiliation(s)
- Sooyeon KIM
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Latiefa KAMARULZAMAN
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi TANIGUCHI
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
9
|
Mapes JH, Stover J, Stout HD, Folsom TM, Babcock E, Loudwig S, Martin C, Austin MJ, Tu F, Howdieshell CJ, Simpson ZB, Blom T, Weaver D, Winkler D, Vander Velden K, Ossareh PM, Beierle JM, Somekh T, Bardo AM, Anslyn EV, Marcotte EM, Swaminathan J. Robust and scalable single-molecule protein sequencing with fluorosequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558007. [PMID: 37745461 PMCID: PMC10516020 DOI: 10.1101/2023.09.15.558007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.
Collapse
Affiliation(s)
| | | | - Heather D Stout
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | - Christopher Martin
- Erisyon, Inc. Austin, TX, 78752
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | | - Fan Tu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | | | | | | | | | | | | | - Angela M Bardo
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jagannath Swaminathan
- Erisyon, Inc. Austin, TX, 78752
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
10
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
11
|
He H, Wu C, Saqib M, Hao R. Single-molecule fluorescence methods for protein biomarker analysis. Anal Bioanal Chem 2023:10.1007/s00216-022-04502-9. [PMID: 36609860 DOI: 10.1007/s00216-022-04502-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuhong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.,Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. .,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Püntener S, Rivera-Fuentes P. Single-Molecule Peptide Identification Using Fluorescence Blinking Fingerprints. J Am Chem Soc 2023; 145:1441-1447. [PMID: 36603184 PMCID: PMC9853850 DOI: 10.1021/jacs.2c12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to identify peptides with single-molecule sensitivity would lead to next-generation proteomics methods for basic research and clinical applications. Existing single-molecule peptide sequencing methods can read some amino acid sequences, but they are limited in their ability to distinguish between similar amino acids or post-translational modifications. Here, we demonstrate that the fluorescence intermittency of a peptide labeled with a spontaneously blinking fluorophore contains information about the structure of the peptide. Using a deep learning algorithm, this single-molecule blinking pattern can be used to identify the peptide. This method can distinguish between peptides with different sequences, peptides with the same sequence but different phosphorylation patterns, and even peptides that differ only by the presence of epimerized residues. This study builds the foundation for a targeted proteomics method with single-molecule sensitivity.
Collapse
Affiliation(s)
- Salome Püntener
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pablo Rivera-Fuentes
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Fédéral de Lausanne, CH-1015 Lausanne, Switzerland,Department
of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland,
| |
Collapse
|
13
|
Liu Y, Wang K, Wang Y, Wang L, Yan S, Du X, Zhang P, Chen HY, Huang S. Machine Learning Assisted Simultaneous Structural Profiling of Differently Charged Proteins in a Mycobacterium smegmatis Porin A (MspA) Electroosmotic Trap. J Am Chem Soc 2022; 144:757-768. [PMID: 34994548 DOI: 10.1021/jacs.1c09259] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nanopore is emerging as a means of single-molecule protein sensing. However, proteins demonstrate different charge properties, which complicates the design of a sensor that can achieve simultaneous sensing of differently charged proteins. In this work, we introduce an asymmetric electrolyte buffer combined with the Mycobacterium smegmatis porin A (MspA) nanopore to form an electroosmotic flow (EOF) trap. Apo- and holo-myoglobin, which differ in only a single heme, can be fully distinguished by this method. Direct discrimination of lysozyme, apo/holo-myoglobin, and the ACTR/NCBD protein complex, which are basic, neutral, and acidic proteins, respectively, was simultaneously achieved by the MspA EOF trap. To automate event classification, multiple event features were extracted to build a machine learning model, with which a 99.9% accuracy is achieved. The demonstrated method was also applied to identify single molecules of α-lactalbumin and β-lactoglobulin directly from whey protein powder. This protein-sensing strategy is useful in direct recognition of a protein from a mixture, suggesting its prospective use in rapid and sensitive detection of biomarkers or real-time protein structural analysis.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
14
|
Nicholson J. A nanopore distance away from next-generation protein sequencing. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|