1
|
Ghosh S, Thamotharan S, Fong J, Lei MYY, Janzen C, Devaskar SU. Circulating extracellular vesicular microRNA signatures in early gestation show an association with subsequent clinical features of pre-eclampsia. Sci Rep 2024; 14:16770. [PMID: 39039088 PMCID: PMC11263608 DOI: 10.1038/s41598-024-64057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
In a prospective cohort of subjects who subsequently developed preeclampsia (PE, n = 14) versus remaining healthy (NORM, n = 12), early gestation circulating extracellular vesicles (EVs) containing a panel of microRNA signatures were characterized and their biological networks of targets deciphered. Multiple microRNAs of which some arose from the placenta (19MC and 14MC) demonstrated changes in association with advancing gestation, while others expressed were pathognomonic of the subsequent development of characteristic clinical features of PE which set in as a late-onset subtype. This panel of miRNAs demonstrated a predictability with an area under the curve of 0.96 using leave-one-out cross-validation training in a logistic regression model with elastic-net regularization and precautions against overfitting. In addition, this panel of miRNAs, some of which were previously detected in either placental tissue or as maternal cell-free non-coding transcripts, lent further validation to our EV studies and the observed association with PE. Further, the identified biological networks of targets of these detected miRNAs revealed biological functions related to vascular remodeling, cellular proliferation, growth, VEGF, EGF and the PIP3/Akt signaling pathways, all mediating key cellular functions. We conclude that we have demonstrated a proof-of-principle by detecting a panel of EV packaged miRNAs in the maternal circulation early in gestation with possibilities of biological function in the placenta and other maternal tissues, along with the probability of predicting the subsequent clinical appearance of PE, particularly the late-onset subtype.
Collapse
Affiliation(s)
- Shubhamoy Ghosh
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Shanthie Thamotharan
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Jeanette Fong
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Margarida Y Y Lei
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Carla Janzen
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Yoo J, Kim GW, Jeon YH, Lee SW, Kwon SH. Epigenetic roles of KDM3B and KDM3C in tumorigenesis and their therapeutic implications. Cell Death Dis 2024; 15:451. [PMID: 38926399 PMCID: PMC11208531 DOI: 10.1038/s41419-024-06850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Advances in functional studies on epigenetic regulators have disclosed the vital roles played by diverse histone lysine demethylases (KDMs), ranging from normal development to tumorigenesis. Most of the KDMs are Jumonji C domain-containing (JMJD) proteins. Many of these KDMs remove methyl groups from histone tails to regulate gene transcription. There are more than 30 known KDM proteins, which fall into different subfamilies. Of the many KDM subfamilies, KDM3 (JMJD1) proteins specifically remove dimethyl and monomethyl marks from lysine 9 on histone H3 and other non-histone proteins. Dysregulation of KDM3 proteins leads to infertility, obesity, metabolic syndromes, heart diseases, and cancers. Among the KDM3 proteins, KDM3A has been largely studied in cancers. However, despite a number of studies pointing out their importance in tumorigenesis, KDM3B and KDM3C are relatively overlooked. KDM3B and KDM3C show context-dependent functions, showing pro- or anti-tumorigenic abilities in different cancers. Thus, this review provides a thorough understanding of the involvement of KDM3B and KDMC in oncology that should be helpful in determining the role of KDM3 proteins in preclinical studies for development of novel pharmacological methods to overcome cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
3
|
Zhu Q, Wang F, Gao D, Gao J, Li G, Jiao D, Zhu G, Xu K, Guo J, Chen T, Cao S, Zhi M, Zhang J, Wang Y, Zhang X, Zhang D, Yao Y, Song J, Wei H, Han J. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition. Cell Prolif 2023; 56:e13487. [PMID: 37190930 PMCID: PMC10623960 DOI: 10.1111/cpr.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Fengchong Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Suying Cao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijingChina
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Danru Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jian Song
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong‐Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Jiang XY, Guan FF, Ma JX, Dong W, Qi XL, Zhang X, Chen W, Gao S, Gao X, Pan S, Wang JZ, Ma YW, Zhang LF, Lu D. Cardiac-specific Trim44 knockout in rat attenuates isoproterenol-induced cardiac remodeling via inhibition of AKT/mTOR pathway. Dis Model Mech 2023; 16:276033. [PMID: 35855640 PMCID: PMC9441189 DOI: 10.1242/dmm.049444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
When pathological hypertrophy progresses to heart failure (HF), the prognosis is often very poor. Therefore, it is crucial to find new and effective intervention targets. Here, myocardium-specific Trim44 knockout rats were generated using CRISPR-Cas9 technology. Cardiac phenotypic observations revealed that Trim44 knockout affected cardiac morphology at baseline. Rats with Trim44 deficiency exhibited resistance to cardiac pathological changes in response to stimulation via isoproterenol (ISO) treatment, including improvement of cardiac remodeling and dysfunction by morphological and functional observations, reduced myocardial fibrosis and reduced expression of molecular markers of cardiac stress. Furthermore, signal transduction validation associated with growth and hypertrophy development in vivo and in vitro demonstrated that Trim44 deficiency inhibited the activation of signaling pathways involved in myocardial hypertrophy, especially response to pathological stress. In conclusion, the present study indicates that Trim44 knockout attenuates ISO-induced pathological cardiac remodeling through blocking the AKT/mTOR/GSK3β/P70S6K signaling pathway. This is the first study to demonstrate the function and importance of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy and HF. Summary: This is the first study to demonstrate the function of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Yu Jiang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jia-Xin Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Ji-Zheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Yuan-Wu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| |
Collapse
|
5
|
Timofeeva AV, Fedorov IS, Sukhova YV, Ivanets TY, Sukhikh GT. Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling. Int J Mol Sci 2023; 24:ijms24098006. [PMID: 37175711 PMCID: PMC10178353 DOI: 10.3390/ijms24098006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pre-eclampsia (PE) is one of the severe complications of pregnancy in 3-8% of all cases and is one of the leading causes of maternal and perinatal mortality. The fundamental role in the pathogenesis of PE is assigned to maternal and/or placental factors, whereby the combination and manifestation of which determines the time of onset of the clinical symptoms of PE (before or after 34 weeks of gestation) and their severity. It is known that the expression level of miRNAs, the regulators of signaling cascades in the cell, depends on gestational age. In the present study, we focused on the identification of the placenta-specific miRNAs that differentiate between early- and late-onset pre-eclampsia (ePE and lPE) throughout pregnancy, from the first to the third trimester. A total of 67 patients were analyzed using small RNA deep sequencing and real-time quantitative PCR, which resulted in a core list of miRNAs (let-7b-5p, let-7d-3p, let-7f-5p, let-7i-5p, miR-22-5p, miR-451a, miR-1246, miR-30e-5p, miR-20a-5p, miR-1307-3p, and miR-320e), which in certain combinations can predict ePE or lPE with 100% sensitivity and 84-100% specificity in the 1st trimester of pregnancy. According to the literature data, these miRNA predictors of PE control trophoblast proliferation, invasion, migration, syncytialization, the endoplasmic reticulum unfolded protein response, immune tolerance, angiogenesis, and vascular integrity. The simultaneous detection of let-7d-3p, miR-451a, and miR-1307-3p, resistant to the repeated freezing/thawing of blood serum samples, in combination with biochemical (b-hCG and PAPP-A) and ultrasound (UAPI) parameters, allowed us to develop a universal model for the prediction of ePE and lPE onset (FPR = 15.7% and FNR = 9.5%), which was validated using a test cohort of 48 patients and demonstrated false-positive results in 26.7% of cases and false negatives in 5.6% of cases. For comparison, the use of the generally accepted Astraia program in the analysis of the test cohort of patients led to worse results: FPR = 62.1% and FNR = 33.3%.
Collapse
Affiliation(s)
- Angelika V Timofeeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S Fedorov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Yuliya V Sukhova
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Tatyana Y Ivanets
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|
6
|
Xu K, Mo X, Wang Y, Zeng Z, Xu Z, Yue D, Li G, Li T, Liu J, Yuan J. Downregulation of miR-527 alleviates sepsis-induced acute kidney injury via targeting Beclin1. Histol Histopathol 2023; 38:443-452. [PMID: 36200697 DOI: 10.14670/hh-18-531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is known to result from the inflammatory responses. MiRNAs participate in the development of sepsis-induced AKI. Nevertheless, the function of miR-527 in sepsis-induced AKI remains unclear. METHODS Cell viability was evaluated by CCK8 assay, and TUNEL staining was applied to assess cell apoptosis. Pro-inflammatory cytokine (TNF-α, IL-6 and IL-1β) levels were evaluated by ELISA. Meanwhile, the relation among miR-527 and Beclin1 was detected by dual luciferase report assay. Western blot and RT-qPCR were used to examine the protein and mRNA levels, respectively. Furthermore, an in vivo model was constructed to assess the function of miR-527 in sepsis-induced AKI. RESULTS MiR-527 downregulation significantly alleviated the symptoms of sepsis-induced AKI in mice. MiR-527 level in HK-2 cells was significantly upregulated by LPS, and downregulation of miR-527 notably reversed LPS-induced inhibition of HK-2 cell viability by inhibiting apoptosis. In addition, LPS greatly increased TNF-α, IL-6 and IL-1β levels in supernatant of HK-2 cells, while miR-527 inhibitor partially restored this phenomenon. Meanwhile, Beclin1 was found to be the downstream mRNA of miR-527, and miR-527 inhibitor notably upregulated the level of LC3. MiR-527 downregulation reversed LPS-induced HK-2 cell injury through suppression of TGF-β pathway. CONCLUSION Downregulation of miR-527 alleviated sepsis-induced AKI via targeting Beclin1. Thus, miR-527 might act as a vital mediator in sepsis-induced AKI.
Collapse
Affiliation(s)
- Ke Xu
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Xiaojun Mo
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijun Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqiang Xu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Dongyou Yue
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Guicheng Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Tao Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Junhong Liu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jiemin Yuan
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| |
Collapse
|